File:  [local] / rpl / lapack / lapack / zla_syrpvgrw.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:37 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       DOUBLE PRECISION FUNCTION ZLA_SYRPVGRW( UPLO, N, INFO, A, LDA, AF,
    2:      $                                        LDAF, IPIV, WORK )
    3: *
    4: *     -- LAPACK routine (version 3.2.2)                                 --
    5: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    6: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    7: *     -- June 2010                                                    --
    8: *
    9: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   10: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   11: *
   12:       IMPLICIT NONE
   13: *     ..
   14: *     .. Scalar Arguments ..
   15:       CHARACTER*1        UPLO
   16:       INTEGER            N, INFO, LDA, LDAF
   17: *     ..
   18: *     .. Array Arguments ..
   19:       COMPLEX*16         A( LDA, * ), AF( LDAF, * )
   20:       DOUBLE PRECISION   WORK( * )
   21:       INTEGER            IPIV( * )
   22: *     ..
   23: *
   24: *  Purpose
   25: *  =======
   26:    27: *  ZLA_SYRPVGRW computes the reciprocal pivot growth factor
   28: *  norm(A)/norm(U). The "max absolute element" norm is used. If this is
   29: *  much less than 1, the stability of the LU factorization of the
   30: *  (equilibrated) matrix A could be poor. This also means that the
   31: *  solution X, estimated condition numbers, and error bounds could be
   32: *  unreliable.
   33: *
   34: *  Arguments
   35: *  =========
   36: *
   37: *     UPLO    (input) CHARACTER*1
   38: *       = 'U':  Upper triangle of A is stored;
   39: *       = 'L':  Lower triangle of A is stored.
   40: *
   41: *     N       (input) INTEGER
   42: *     The number of linear equations, i.e., the order of the
   43: *     matrix A.  N >= 0.
   44: *
   45: *     INFO    (input) INTEGER
   46: *     The value of INFO returned from ZSYTRF, .i.e., the pivot in
   47: *     column INFO is exactly 0.
   48: *
   49: *     NCOLS   (input) INTEGER
   50: *     The number of columns of the matrix A. NCOLS >= 0.
   51: *
   52: *     A       (input) COMPLEX*16 array, dimension (LDA,N)
   53: *     On entry, the N-by-N matrix A.
   54: *
   55: *     LDA     (input) INTEGER
   56: *     The leading dimension of the array A.  LDA >= max(1,N).
   57: *
   58: *     AF      (input) COMPLEX*16 array, dimension (LDAF,N)
   59: *     The block diagonal matrix D and the multipliers used to
   60: *     obtain the factor U or L as computed by ZSYTRF.
   61: *
   62: *     LDAF    (input) INTEGER
   63: *     The leading dimension of the array AF.  LDAF >= max(1,N).
   64: *
   65: *     IPIV    (input) INTEGER array, dimension (N)
   66: *     Details of the interchanges and the block structure of D
   67: *     as determined by ZSYTRF.
   68: *
   69: *     WORK    (input) COMPLEX*16 array, dimension (2*N)
   70: *
   71: *  =====================================================================
   72: *
   73: *     .. Local Scalars ..
   74:       INTEGER            NCOLS, I, J, K, KP
   75:       DOUBLE PRECISION   AMAX, UMAX, RPVGRW, TMP
   76:       LOGICAL            UPPER
   77:       COMPLEX*16         ZDUM
   78: *     ..
   79: *     .. Intrinsic Functions ..
   80:       INTRINSIC          ABS, REAL, DIMAG, MAX, MIN
   81: *     ..
   82: *     .. External Subroutines ..
   83:       EXTERNAL           LSAME, ZLASET
   84:       LOGICAL            LSAME
   85: *     ..
   86: *     .. Statement Functions ..
   87:       DOUBLE PRECISION   CABS1
   88: *     ..
   89: *     .. Statement Function Definitions ..
   90:       CABS1( ZDUM ) = ABS( DBLE ( ZDUM ) ) + ABS( DIMAG ( ZDUM ) )
   91: *     ..
   92: *     .. Executable Statements ..
   93: *
   94:       UPPER = LSAME( 'Upper', UPLO )
   95:       IF ( INFO.EQ.0 ) THEN
   96:          IF ( UPPER ) THEN
   97:             NCOLS = 1
   98:          ELSE
   99:             NCOLS = N
  100:          END IF
  101:       ELSE
  102:          NCOLS = INFO
  103:       END IF
  104: 
  105:       RPVGRW = 1.0D+0
  106:       DO I = 1, 2*N
  107:          WORK( I ) = 0.0D+0
  108:       END DO
  109: *
  110: *     Find the max magnitude entry of each column of A.  Compute the max
  111: *     for all N columns so we can apply the pivot permutation while
  112: *     looping below.  Assume a full factorization is the common case.
  113: *
  114:       IF ( UPPER ) THEN
  115:          DO J = 1, N
  116:             DO I = 1, J
  117:                WORK( N+I ) = MAX( CABS1( A( I, J ) ), WORK( N+I ) )
  118:                WORK( N+J ) = MAX( CABS1( A( I, J ) ), WORK( N+J ) )
  119:             END DO
  120:          END DO
  121:       ELSE
  122:          DO J = 1, N
  123:             DO I = J, N
  124:                WORK( N+I ) = MAX( CABS1( A( I, J ) ), WORK( N+I ) )
  125:                WORK( N+J ) = MAX( CABS1( A( I, J ) ), WORK( N+J ) )
  126:             END DO
  127:          END DO
  128:       END IF
  129: *
  130: *     Now find the max magnitude entry of each column of U or L.  Also
  131: *     permute the magnitudes of A above so they're in the same order as
  132: *     the factor.
  133: *
  134: *     The iteration orders and permutations were copied from zsytrs.
  135: *     Calls to SSWAP would be severe overkill.
  136: *
  137:       IF ( UPPER ) THEN
  138:          K = N
  139:          DO WHILE ( K .LT. NCOLS .AND. K.GT.0 )
  140:             IF ( IPIV( K ).GT.0 ) THEN
  141: !              1x1 pivot
  142:                KP = IPIV( K )
  143:                IF ( KP .NE. K ) THEN
  144:                   TMP = WORK( N+K )
  145:                   WORK( N+K ) = WORK( N+KP )
  146:                   WORK( N+KP ) = TMP
  147:                END IF
  148:                DO I = 1, K
  149:                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
  150:                END DO
  151:                K = K - 1
  152:             ELSE
  153: !              2x2 pivot
  154:                KP = -IPIV( K )
  155:                TMP = WORK( N+K-1 )
  156:                WORK( N+K-1 ) = WORK( N+KP )
  157:                WORK( N+KP ) = TMP
  158:                DO I = 1, K-1
  159:                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
  160:                   WORK( K-1 ) =
  161:      $                 MAX( CABS1( AF( I, K-1 ) ), WORK( K-1 ) )
  162:                END DO
  163:                WORK( K ) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
  164:                K = K - 2
  165:             END IF
  166:          END DO
  167:          K = NCOLS
  168:          DO WHILE ( K .LE. N )
  169:             IF ( IPIV( K ).GT.0 ) THEN
  170:                KP = IPIV( K )
  171:                IF ( KP .NE. K ) THEN
  172:                   TMP = WORK( N+K )
  173:                   WORK( N+K ) = WORK( N+KP )
  174:                   WORK( N+KP ) = TMP
  175:                END IF
  176:                K = K + 1
  177:             ELSE
  178:                KP = -IPIV( K )
  179:                TMP = WORK( N+K )
  180:                WORK( N+K ) = WORK( N+KP )
  181:                WORK( N+KP ) = TMP
  182:                K = K + 2
  183:             END IF
  184:          END DO
  185:       ELSE
  186:          K = 1
  187:          DO WHILE ( K .LE. NCOLS )
  188:             IF ( IPIV( K ).GT.0 ) THEN
  189: !              1x1 pivot
  190:                KP = IPIV( K )
  191:                IF ( KP .NE. K ) THEN
  192:                   TMP = WORK( N+K )
  193:                   WORK( N+K ) = WORK( N+KP )
  194:                   WORK( N+KP ) = TMP
  195:                END IF
  196:                DO I = K, N
  197:                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
  198:                END DO
  199:                K = K + 1
  200:             ELSE
  201: !              2x2 pivot
  202:                KP = -IPIV( K )
  203:                TMP = WORK( N+K+1 )
  204:                WORK( N+K+1 ) = WORK( N+KP )
  205:                WORK( N+KP ) = TMP
  206:                DO I = K+1, N
  207:                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
  208:                   WORK( K+1 ) =
  209:      $                 MAX( CABS1( AF( I, K+1 ) ), WORK( K+1 ) )
  210:                END DO
  211:                WORK( K ) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
  212:                K = K + 2
  213:             END IF
  214:          END DO
  215:          K = NCOLS
  216:          DO WHILE ( K .GE. 1 )
  217:             IF ( IPIV( K ).GT.0 ) THEN
  218:                KP = IPIV( K )
  219:                IF ( KP .NE. K ) THEN
  220:                   TMP = WORK( N+K )
  221:                   WORK( N+K ) = WORK( N+KP )
  222:                   WORK( N+KP ) = TMP
  223:                END IF
  224:                K = K - 1
  225:             ELSE
  226:                KP = -IPIV( K )
  227:                TMP = WORK( N+K )
  228:                WORK( N+K ) = WORK( N+KP )
  229:                WORK( N+KP ) = TMP
  230:                K = K - 2
  231:             ENDIF
  232:          END DO
  233:       END IF
  234: *
  235: *     Compute the *inverse* of the max element growth factor.  Dividing
  236: *     by zero would imply the largest entry of the factor's column is
  237: *     zero.  Than can happen when either the column of A is zero or
  238: *     massive pivots made the factor underflow to zero.  Neither counts
  239: *     as growth in itself, so simply ignore terms with zero
  240: *     denominators.
  241: *
  242:       IF ( UPPER ) THEN
  243:          DO I = NCOLS, N
  244:             UMAX = WORK( I )
  245:             AMAX = WORK( N+I )
  246:             IF ( UMAX /= 0.0D+0 ) THEN
  247:                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  248:             END IF
  249:          END DO
  250:       ELSE
  251:          DO I = 1, NCOLS
  252:             UMAX = WORK( I )
  253:             AMAX = WORK( N+I )
  254:             IF ( UMAX /= 0.0D+0 ) THEN
  255:                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  256:             END IF
  257:          END DO
  258:       END IF
  259: 
  260:       ZLA_SYRPVGRW = RPVGRW
  261:       END

CVSweb interface <joel.bertrand@systella.fr>