File:  [local] / rpl / lapack / lapack / zla_syrpvgrw.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 11:06:52 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_27, rpl-4_1_26, HEAD
Cohérence.

    1: *> \brief \b ZLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLA_SYRPVGRW + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_syrpvgrw.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_syrpvgrw.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_syrpvgrw.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION ZLA_SYRPVGRW( UPLO, N, INFO, A, LDA, AF,
   22: *                                               LDAF, IPIV, WORK )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER*1        UPLO
   26: *       INTEGER            N, INFO, LDA, LDAF
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * )
   30: *       DOUBLE PRECISION   WORK( * )
   31: *       INTEGER            IPIV( * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *>
   41: *> ZLA_SYRPVGRW computes the reciprocal pivot growth factor
   42: *> norm(A)/norm(U). The "max absolute element" norm is used. If this is
   43: *> much less than 1, the stability of the LU factorization of the
   44: *> (equilibrated) matrix A could be poor. This also means that the
   45: *> solution X, estimated condition numbers, and error bounds could be
   46: *> unreliable.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] UPLO
   53: *> \verbatim
   54: *>          UPLO is CHARACTER*1
   55: *>       = 'U':  Upper triangle of A is stored;
   56: *>       = 'L':  Lower triangle of A is stored.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] N
   60: *> \verbatim
   61: *>          N is INTEGER
   62: *>     The number of linear equations, i.e., the order of the
   63: *>     matrix A.  N >= 0.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] INFO
   67: *> \verbatim
   68: *>          INFO is INTEGER
   69: *>     The value of INFO returned from ZSYTRF, .i.e., the pivot in
   70: *>     column INFO is exactly 0.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] A
   74: *> \verbatim
   75: *>          A is COMPLEX*16 array, dimension (LDA,N)
   76: *>     On entry, the N-by-N matrix A.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] LDA
   80: *> \verbatim
   81: *>          LDA is INTEGER
   82: *>     The leading dimension of the array A.  LDA >= max(1,N).
   83: *> \endverbatim
   84: *>
   85: *> \param[in] AF
   86: *> \verbatim
   87: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
   88: *>     The block diagonal matrix D and the multipliers used to
   89: *>     obtain the factor U or L as computed by ZSYTRF.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] LDAF
   93: *> \verbatim
   94: *>          LDAF is INTEGER
   95: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
   96: *> \endverbatim
   97: *>
   98: *> \param[in] IPIV
   99: *> \verbatim
  100: *>          IPIV is INTEGER array, dimension (N)
  101: *>     Details of the interchanges and the block structure of D
  102: *>     as determined by ZSYTRF.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] WORK
  106: *> \verbatim
  107: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
  108: *> \endverbatim
  109: *
  110: *  Authors:
  111: *  ========
  112: *
  113: *> \author Univ. of Tennessee
  114: *> \author Univ. of California Berkeley
  115: *> \author Univ. of Colorado Denver
  116: *> \author NAG Ltd.
  117: *
  118: *> \date December 2016
  119: *
  120: *> \ingroup complex16SYcomputational
  121: *
  122: *  =====================================================================
  123:       DOUBLE PRECISION FUNCTION ZLA_SYRPVGRW( UPLO, N, INFO, A, LDA, AF,
  124:      $                                        LDAF, IPIV, WORK )
  125: *
  126: *  -- LAPACK computational routine (version 3.7.0) --
  127: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  128: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  129: *     December 2016
  130: *
  131: *     .. Scalar Arguments ..
  132:       CHARACTER*1        UPLO
  133:       INTEGER            N, INFO, LDA, LDAF
  134: *     ..
  135: *     .. Array Arguments ..
  136:       COMPLEX*16         A( LDA, * ), AF( LDAF, * )
  137:       DOUBLE PRECISION   WORK( * )
  138:       INTEGER            IPIV( * )
  139: *     ..
  140: *
  141: *  =====================================================================
  142: *
  143: *     .. Local Scalars ..
  144:       INTEGER            NCOLS, I, J, K, KP
  145:       DOUBLE PRECISION   AMAX, UMAX, RPVGRW, TMP
  146:       LOGICAL            UPPER
  147:       COMPLEX*16         ZDUM
  148: *     ..
  149: *     .. Intrinsic Functions ..
  150:       INTRINSIC          ABS, REAL, DIMAG, MAX, MIN
  151: *     ..
  152: *     .. External Subroutines ..
  153:       EXTERNAL           LSAME
  154:       LOGICAL            LSAME
  155: *     ..
  156: *     .. Statement Functions ..
  157:       DOUBLE PRECISION   CABS1
  158: *     ..
  159: *     .. Statement Function Definitions ..
  160:       CABS1( ZDUM ) = ABS( DBLE ( ZDUM ) ) + ABS( DIMAG ( ZDUM ) )
  161: *     ..
  162: *     .. Executable Statements ..
  163: *
  164:       UPPER = LSAME( 'Upper', UPLO )
  165:       IF ( INFO.EQ.0 ) THEN
  166:          IF ( UPPER ) THEN
  167:             NCOLS = 1
  168:          ELSE
  169:             NCOLS = N
  170:          END IF
  171:       ELSE
  172:          NCOLS = INFO
  173:       END IF
  174: 
  175:       RPVGRW = 1.0D+0
  176:       DO I = 1, 2*N
  177:          WORK( I ) = 0.0D+0
  178:       END DO
  179: *
  180: *     Find the max magnitude entry of each column of A.  Compute the max
  181: *     for all N columns so we can apply the pivot permutation while
  182: *     looping below.  Assume a full factorization is the common case.
  183: *
  184:       IF ( UPPER ) THEN
  185:          DO J = 1, N
  186:             DO I = 1, J
  187:                WORK( N+I ) = MAX( CABS1( A( I, J ) ), WORK( N+I ) )
  188:                WORK( N+J ) = MAX( CABS1( A( I, J ) ), WORK( N+J ) )
  189:             END DO
  190:          END DO
  191:       ELSE
  192:          DO J = 1, N
  193:             DO I = J, N
  194:                WORK( N+I ) = MAX( CABS1( A( I, J ) ), WORK( N+I ) )
  195:                WORK( N+J ) = MAX( CABS1( A( I, J ) ), WORK( N+J ) )
  196:             END DO
  197:          END DO
  198:       END IF
  199: *
  200: *     Now find the max magnitude entry of each column of U or L.  Also
  201: *     permute the magnitudes of A above so they're in the same order as
  202: *     the factor.
  203: *
  204: *     The iteration orders and permutations were copied from zsytrs.
  205: *     Calls to SSWAP would be severe overkill.
  206: *
  207:       IF ( UPPER ) THEN
  208:          K = N
  209:          DO WHILE ( K .LT. NCOLS .AND. K.GT.0 )
  210:             IF ( IPIV( K ).GT.0 ) THEN
  211: !              1x1 pivot
  212:                KP = IPIV( K )
  213:                IF ( KP .NE. K ) THEN
  214:                   TMP = WORK( N+K )
  215:                   WORK( N+K ) = WORK( N+KP )
  216:                   WORK( N+KP ) = TMP
  217:                END IF
  218:                DO I = 1, K
  219:                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
  220:                END DO
  221:                K = K - 1
  222:             ELSE
  223: !              2x2 pivot
  224:                KP = -IPIV( K )
  225:                TMP = WORK( N+K-1 )
  226:                WORK( N+K-1 ) = WORK( N+KP )
  227:                WORK( N+KP ) = TMP
  228:                DO I = 1, K-1
  229:                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
  230:                   WORK( K-1 ) =
  231:      $                 MAX( CABS1( AF( I, K-1 ) ), WORK( K-1 ) )
  232:                END DO
  233:                WORK( K ) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
  234:                K = K - 2
  235:             END IF
  236:          END DO
  237:          K = NCOLS
  238:          DO WHILE ( K .LE. N )
  239:             IF ( IPIV( K ).GT.0 ) THEN
  240:                KP = IPIV( K )
  241:                IF ( KP .NE. K ) THEN
  242:                   TMP = WORK( N+K )
  243:                   WORK( N+K ) = WORK( N+KP )
  244:                   WORK( N+KP ) = TMP
  245:                END IF
  246:                K = K + 1
  247:             ELSE
  248:                KP = -IPIV( K )
  249:                TMP = WORK( N+K )
  250:                WORK( N+K ) = WORK( N+KP )
  251:                WORK( N+KP ) = TMP
  252:                K = K + 2
  253:             END IF
  254:          END DO
  255:       ELSE
  256:          K = 1
  257:          DO WHILE ( K .LE. NCOLS )
  258:             IF ( IPIV( K ).GT.0 ) THEN
  259: !              1x1 pivot
  260:                KP = IPIV( K )
  261:                IF ( KP .NE. K ) THEN
  262:                   TMP = WORK( N+K )
  263:                   WORK( N+K ) = WORK( N+KP )
  264:                   WORK( N+KP ) = TMP
  265:                END IF
  266:                DO I = K, N
  267:                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
  268:                END DO
  269:                K = K + 1
  270:             ELSE
  271: !              2x2 pivot
  272:                KP = -IPIV( K )
  273:                TMP = WORK( N+K+1 )
  274:                WORK( N+K+1 ) = WORK( N+KP )
  275:                WORK( N+KP ) = TMP
  276:                DO I = K+1, N
  277:                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
  278:                   WORK( K+1 ) =
  279:      $                 MAX( CABS1( AF( I, K+1 ) ), WORK( K+1 ) )
  280:                END DO
  281:                WORK( K ) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
  282:                K = K + 2
  283:             END IF
  284:          END DO
  285:          K = NCOLS
  286:          DO WHILE ( K .GE. 1 )
  287:             IF ( IPIV( K ).GT.0 ) THEN
  288:                KP = IPIV( K )
  289:                IF ( KP .NE. K ) THEN
  290:                   TMP = WORK( N+K )
  291:                   WORK( N+K ) = WORK( N+KP )
  292:                   WORK( N+KP ) = TMP
  293:                END IF
  294:                K = K - 1
  295:             ELSE
  296:                KP = -IPIV( K )
  297:                TMP = WORK( N+K )
  298:                WORK( N+K ) = WORK( N+KP )
  299:                WORK( N+KP ) = TMP
  300:                K = K - 2
  301:             ENDIF
  302:          END DO
  303:       END IF
  304: *
  305: *     Compute the *inverse* of the max element growth factor.  Dividing
  306: *     by zero would imply the largest entry of the factor's column is
  307: *     zero.  Than can happen when either the column of A is zero or
  308: *     massive pivots made the factor underflow to zero.  Neither counts
  309: *     as growth in itself, so simply ignore terms with zero
  310: *     denominators.
  311: *
  312:       IF ( UPPER ) THEN
  313:          DO I = NCOLS, N
  314:             UMAX = WORK( I )
  315:             AMAX = WORK( N+I )
  316:             IF ( UMAX /= 0.0D+0 ) THEN
  317:                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  318:             END IF
  319:          END DO
  320:       ELSE
  321:          DO I = 1, NCOLS
  322:             UMAX = WORK( I )
  323:             AMAX = WORK( N+I )
  324:             IF ( UMAX /= 0.0D+0 ) THEN
  325:                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  326:             END IF
  327:          END DO
  328:       END IF
  329: 
  330:       ZLA_SYRPVGRW = RPVGRW
  331:       END

CVSweb interface <joel.bertrand@systella.fr>