File:  [local] / rpl / lapack / lapack / zla_syrfsx_extended.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:43:14 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLA_SYRFSX_EXTENDED
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLA_SYRFSX_EXTENDED + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_syrfsx_extended.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_syrfsx_extended.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_syrfsx_extended.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
   22: *                                       AF, LDAF, IPIV, COLEQU, C, B, LDB,
   23: *                                       Y, LDY, BERR_OUT, N_NORMS,
   24: *                                       ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
   25: *                                       AYB, DY, Y_TAIL, RCOND, ITHRESH,
   26: *                                       RTHRESH, DZ_UB, IGNORE_CWISE,
   27: *                                       INFO )
   28:    29: *       .. Scalar Arguments ..
   30: *       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
   31: *      $                   N_NORMS, ITHRESH
   32: *       CHARACTER          UPLO
   33: *       LOGICAL            COLEQU, IGNORE_CWISE
   34: *       DOUBLE PRECISION   RTHRESH, DZ_UB
   35: *       ..
   36: *       .. Array Arguments ..
   37: *       INTEGER            IPIV( * )
   38: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   39: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
   40: *       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
   41: *      $                   ERR_BNDS_NORM( NRHS, * ),
   42: *      $                   ERR_BNDS_COMP( NRHS, * )
   43: *       ..
   44: *  
   45: *
   46: *> \par Purpose:
   47: *  =============
   48: *>
   49: *> \verbatim
   50: *>
   51: *> ZLA_SYRFSX_EXTENDED improves the computed solution to a system of
   52: *> linear equations by performing extra-precise iterative refinement
   53: *> and provides error bounds and backward error estimates for the solution.
   54: *> This subroutine is called by ZSYRFSX to perform iterative refinement.
   55: *> In addition to normwise error bound, the code provides maximum
   56: *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
   57: *> and ERR_BNDS_COMP for details of the error bounds. Note that this
   58: *> subroutine is only resonsible for setting the second fields of
   59: *> ERR_BNDS_NORM and ERR_BNDS_COMP.
   60: *> \endverbatim
   61: *
   62: *  Arguments:
   63: *  ==========
   64: *
   65: *> \param[in] PREC_TYPE
   66: *> \verbatim
   67: *>          PREC_TYPE is INTEGER
   68: *>     Specifies the intermediate precision to be used in refinement.
   69: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and
   70: *>     P    = 'S':  Single
   71: *>          = 'D':  Double
   72: *>          = 'I':  Indigenous
   73: *>          = 'X', 'E':  Extra
   74: *> \endverbatim
   75: *>
   76: *> \param[in] UPLO
   77: *> \verbatim
   78: *>          UPLO is CHARACTER*1
   79: *>       = 'U':  Upper triangle of A is stored;
   80: *>       = 'L':  Lower triangle of A is stored.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] N
   84: *> \verbatim
   85: *>          N is INTEGER
   86: *>     The number of linear equations, i.e., the order of the
   87: *>     matrix A.  N >= 0.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] NRHS
   91: *> \verbatim
   92: *>          NRHS is INTEGER
   93: *>     The number of right-hand-sides, i.e., the number of columns of the
   94: *>     matrix B.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] A
   98: *> \verbatim
   99: *>          A is COMPLEX*16 array, dimension (LDA,N)
  100: *>     On entry, the N-by-N matrix A.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDA
  104: *> \verbatim
  105: *>          LDA is INTEGER
  106: *>     The leading dimension of the array A.  LDA >= max(1,N).
  107: *> \endverbatim
  108: *>
  109: *> \param[in] AF
  110: *> \verbatim
  111: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
  112: *>     The block diagonal matrix D and the multipliers used to
  113: *>     obtain the factor U or L as computed by ZSYTRF.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDAF
  117: *> \verbatim
  118: *>          LDAF is INTEGER
  119: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  120: *> \endverbatim
  121: *>
  122: *> \param[in] IPIV
  123: *> \verbatim
  124: *>          IPIV is INTEGER array, dimension (N)
  125: *>     Details of the interchanges and the block structure of D
  126: *>     as determined by ZSYTRF.
  127: *> \endverbatim
  128: *>
  129: *> \param[in] COLEQU
  130: *> \verbatim
  131: *>          COLEQU is LOGICAL
  132: *>     If .TRUE. then column equilibration was done to A before calling
  133: *>     this routine. This is needed to compute the solution and error
  134: *>     bounds correctly.
  135: *> \endverbatim
  136: *>
  137: *> \param[in] C
  138: *> \verbatim
  139: *>          C is DOUBLE PRECISION array, dimension (N)
  140: *>     The column scale factors for A. If COLEQU = .FALSE., C
  141: *>     is not accessed. If C is input, each element of C should be a power
  142: *>     of the radix to ensure a reliable solution and error estimates.
  143: *>     Scaling by powers of the radix does not cause rounding errors unless
  144: *>     the result underflows or overflows. Rounding errors during scaling
  145: *>     lead to refining with a matrix that is not equivalent to the
  146: *>     input matrix, producing error estimates that may not be
  147: *>     reliable.
  148: *> \endverbatim
  149: *>
  150: *> \param[in] B
  151: *> \verbatim
  152: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  153: *>     The right-hand-side matrix B.
  154: *> \endverbatim
  155: *>
  156: *> \param[in] LDB
  157: *> \verbatim
  158: *>          LDB is INTEGER
  159: *>     The leading dimension of the array B.  LDB >= max(1,N).
  160: *> \endverbatim
  161: *>
  162: *> \param[in,out] Y
  163: *> \verbatim
  164: *>          Y is COMPLEX*16 array, dimension
  165: *>                    (LDY,NRHS)
  166: *>     On entry, the solution matrix X, as computed by ZSYTRS.
  167: *>     On exit, the improved solution matrix Y.
  168: *> \endverbatim
  169: *>
  170: *> \param[in] LDY
  171: *> \verbatim
  172: *>          LDY is INTEGER
  173: *>     The leading dimension of the array Y.  LDY >= max(1,N).
  174: *> \endverbatim
  175: *>
  176: *> \param[out] BERR_OUT
  177: *> \verbatim
  178: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
  179: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
  180: *>     error for right-hand-side j from the formula
  181: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  182: *>     where abs(Z) is the componentwise absolute value of the matrix
  183: *>     or vector Z. This is computed by ZLA_LIN_BERR.
  184: *> \endverbatim
  185: *>
  186: *> \param[in] N_NORMS
  187: *> \verbatim
  188: *>          N_NORMS is INTEGER
  189: *>     Determines which error bounds to return (see ERR_BNDS_NORM
  190: *>     and ERR_BNDS_COMP).
  191: *>     If N_NORMS >= 1 return normwise error bounds.
  192: *>     If N_NORMS >= 2 return componentwise error bounds.
  193: *> \endverbatim
  194: *>
  195: *> \param[in,out] ERR_BNDS_NORM
  196: *> \verbatim
  197: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension
  198: *>                    (NRHS, N_ERR_BNDS)
  199: *>     For each right-hand side, this array contains information about
  200: *>     various error bounds and condition numbers corresponding to the
  201: *>     normwise relative error, which is defined as follows:
  202: *>
  203: *>     Normwise relative error in the ith solution vector:
  204: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  205: *>            ------------------------------
  206: *>                  max_j abs(X(j,i))
  207: *>
  208: *>     The array is indexed by the type of error information as described
  209: *>     below. There currently are up to three pieces of information
  210: *>     returned.
  211: *>
  212: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  213: *>     right-hand side.
  214: *>
  215: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  216: *>     three fields:
  217: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  218: *>              reciprocal condition number is less than the threshold
  219: *>              sqrt(n) * slamch('Epsilon').
  220: *>
  221: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  222: *>              almost certainly within a factor of 10 of the true error
  223: *>              so long as the next entry is greater than the threshold
  224: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  225: *>              be trusted if the previous boolean is true.
  226: *>
  227: *>     err = 3  Reciprocal condition number: Estimated normwise
  228: *>              reciprocal condition number.  Compared with the threshold
  229: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  230: *>              estimate is "guaranteed". These reciprocal condition
  231: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  232: *>              appropriately scaled matrix Z.
  233: *>              Let Z = S*A, where S scales each row by a power of the
  234: *>              radix so all absolute row sums of Z are approximately 1.
  235: *>
  236: *>     This subroutine is only responsible for setting the second field
  237: *>     above.
  238: *>     See Lapack Working Note 165 for further details and extra
  239: *>     cautions.
  240: *> \endverbatim
  241: *>
  242: *> \param[in,out] ERR_BNDS_COMP
  243: *> \verbatim
  244: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension
  245: *>                    (NRHS, N_ERR_BNDS)
  246: *>     For each right-hand side, this array contains information about
  247: *>     various error bounds and condition numbers corresponding to the
  248: *>     componentwise relative error, which is defined as follows:
  249: *>
  250: *>     Componentwise relative error in the ith solution vector:
  251: *>                    abs(XTRUE(j,i) - X(j,i))
  252: *>             max_j ----------------------
  253: *>                         abs(X(j,i))
  254: *>
  255: *>     The array is indexed by the right-hand side i (on which the
  256: *>     componentwise relative error depends), and the type of error
  257: *>     information as described below. There currently are up to three
  258: *>     pieces of information returned for each right-hand side. If
  259: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  260: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
  261: *>     the first (:,N_ERR_BNDS) entries are returned.
  262: *>
  263: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  264: *>     right-hand side.
  265: *>
  266: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  267: *>     three fields:
  268: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  269: *>              reciprocal condition number is less than the threshold
  270: *>              sqrt(n) * slamch('Epsilon').
  271: *>
  272: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  273: *>              almost certainly within a factor of 10 of the true error
  274: *>              so long as the next entry is greater than the threshold
  275: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  276: *>              be trusted if the previous boolean is true.
  277: *>
  278: *>     err = 3  Reciprocal condition number: Estimated componentwise
  279: *>              reciprocal condition number.  Compared with the threshold
  280: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  281: *>              estimate is "guaranteed". These reciprocal condition
  282: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  283: *>              appropriately scaled matrix Z.
  284: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  285: *>              current right-hand side and S scales each row of
  286: *>              A*diag(x) by a power of the radix so all absolute row
  287: *>              sums of Z are approximately 1.
  288: *>
  289: *>     This subroutine is only responsible for setting the second field
  290: *>     above.
  291: *>     See Lapack Working Note 165 for further details and extra
  292: *>     cautions.
  293: *> \endverbatim
  294: *>
  295: *> \param[in] RES
  296: *> \verbatim
  297: *>          RES is COMPLEX*16 array, dimension (N)
  298: *>     Workspace to hold the intermediate residual.
  299: *> \endverbatim
  300: *>
  301: *> \param[in] AYB
  302: *> \verbatim
  303: *>          AYB is DOUBLE PRECISION array, dimension (N)
  304: *>     Workspace.
  305: *> \endverbatim
  306: *>
  307: *> \param[in] DY
  308: *> \verbatim
  309: *>          DY is COMPLEX*16 array, dimension (N)
  310: *>     Workspace to hold the intermediate solution.
  311: *> \endverbatim
  312: *>
  313: *> \param[in] Y_TAIL
  314: *> \verbatim
  315: *>          Y_TAIL is COMPLEX*16 array, dimension (N)
  316: *>     Workspace to hold the trailing bits of the intermediate solution.
  317: *> \endverbatim
  318: *>
  319: *> \param[in] RCOND
  320: *> \verbatim
  321: *>          RCOND is DOUBLE PRECISION
  322: *>     Reciprocal scaled condition number.  This is an estimate of the
  323: *>     reciprocal Skeel condition number of the matrix A after
  324: *>     equilibration (if done).  If this is less than the machine
  325: *>     precision (in particular, if it is zero), the matrix is singular
  326: *>     to working precision.  Note that the error may still be small even
  327: *>     if this number is very small and the matrix appears ill-
  328: *>     conditioned.
  329: *> \endverbatim
  330: *>
  331: *> \param[in] ITHRESH
  332: *> \verbatim
  333: *>          ITHRESH is INTEGER
  334: *>     The maximum number of residual computations allowed for
  335: *>     refinement. The default is 10. For 'aggressive' set to 100 to
  336: *>     permit convergence using approximate factorizations or
  337: *>     factorizations other than LU. If the factorization uses a
  338: *>     technique other than Gaussian elimination, the guarantees in
  339: *>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
  340: *> \endverbatim
  341: *>
  342: *> \param[in] RTHRESH
  343: *> \verbatim
  344: *>          RTHRESH is DOUBLE PRECISION
  345: *>     Determines when to stop refinement if the error estimate stops
  346: *>     decreasing. Refinement will stop when the next solution no longer
  347: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  348: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  349: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
  350: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
  351: *>     for more details.
  352: *> \endverbatim
  353: *>
  354: *> \param[in] DZ_UB
  355: *> \verbatim
  356: *>          DZ_UB is DOUBLE PRECISION
  357: *>     Determines when to start considering componentwise convergence.
  358: *>     Componentwise convergence is only considered after each component
  359: *>     of the solution Y is stable, which we definte as the relative
  360: *>     change in each component being less than DZ_UB. The default value
  361: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
  362: *>     more details.
  363: *> \endverbatim
  364: *>
  365: *> \param[in] IGNORE_CWISE
  366: *> \verbatim
  367: *>          IGNORE_CWISE is LOGICAL
  368: *>     If .TRUE. then ignore componentwise convergence. Default value
  369: *>     is .FALSE..
  370: *> \endverbatim
  371: *>
  372: *> \param[out] INFO
  373: *> \verbatim
  374: *>          INFO is INTEGER
  375: *>       = 0:  Successful exit.
  376: *>       < 0:  if INFO = -i, the ith argument to ZSYTRS had an illegal
  377: *>             value
  378: *> \endverbatim
  379: *
  380: *  Authors:
  381: *  ========
  382: *
  383: *> \author Univ. of Tennessee 
  384: *> \author Univ. of California Berkeley 
  385: *> \author Univ. of Colorado Denver 
  386: *> \author NAG Ltd. 
  387: *
  388: *> \date November 2011
  389: *
  390: *> \ingroup complex16SYcomputational
  391: *
  392: *  =====================================================================
  393:       SUBROUTINE ZLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
  394:      $                                AF, LDAF, IPIV, COLEQU, C, B, LDB,
  395:      $                                Y, LDY, BERR_OUT, N_NORMS,
  396:      $                                ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
  397:      $                                AYB, DY, Y_TAIL, RCOND, ITHRESH,
  398:      $                                RTHRESH, DZ_UB, IGNORE_CWISE,
  399:      $                                INFO )
  400: *
  401: *  -- LAPACK computational routine (version 3.4.0) --
  402: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  403: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  404: *     November 2011
  405: *
  406: *     .. Scalar Arguments ..
  407:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
  408:      $                   N_NORMS, ITHRESH
  409:       CHARACTER          UPLO
  410:       LOGICAL            COLEQU, IGNORE_CWISE
  411:       DOUBLE PRECISION   RTHRESH, DZ_UB
  412: *     ..
  413: *     .. Array Arguments ..
  414:       INTEGER            IPIV( * )
  415:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  416:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  417:       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
  418:      $                   ERR_BNDS_NORM( NRHS, * ),
  419:      $                   ERR_BNDS_COMP( NRHS, * )
  420: *     ..
  421: *
  422: *  =====================================================================
  423: *
  424: *     .. Local Scalars ..
  425:       INTEGER            UPLO2, CNT, I, J, X_STATE, Z_STATE,
  426:      $                   Y_PREC_STATE
  427:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  428:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  429:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  430:      $                   EPS, HUGEVAL, INCR_THRESH
  431:       LOGICAL            INCR_PREC
  432:       COMPLEX*16         ZDUM
  433: *     ..
  434: *     .. Parameters ..
  435:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  436:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
  437:      $                   EXTRA_Y
  438:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  439:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
  440:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  441:      $                   EXTRA_Y = 2 )
  442:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  443:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  444:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  445:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  446:      $                   BERR_I = 3 )
  447:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  448:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  449:      $                   PIV_GROWTH_I = 9 )
  450:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  451:      $                   LA_LINRX_CWISE_I
  452:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  453:      $                   LA_LINRX_ITHRESH_I = 2 )
  454:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  455:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  456:      $                   LA_LINRX_RCOND_I
  457:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  458:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  459: *     ..
  460: *     .. External Functions ..
  461:       LOGICAL            LSAME
  462:       EXTERNAL           ILAUPLO
  463:       INTEGER            ILAUPLO
  464: *     ..
  465: *     .. External Subroutines ..
  466:       EXTERNAL           ZAXPY, ZCOPY, ZSYTRS, ZSYMV, BLAS_ZSYMV_X,
  467:      $                   BLAS_ZSYMV2_X, ZLA_SYAMV, ZLA_WWADDW,
  468:      $                   ZLA_LIN_BERR
  469:       DOUBLE PRECISION   DLAMCH
  470: *     ..
  471: *     .. Intrinsic Functions ..
  472:       INTRINSIC          ABS, REAL, DIMAG, MAX, MIN
  473: *     ..
  474: *     .. Statement Functions ..
  475:       DOUBLE PRECISION   CABS1
  476: *     ..
  477: *     .. Statement Function Definitions ..
  478:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  479: *     ..
  480: *     .. Executable Statements ..
  481: *
  482:       IF ( INFO.NE.0 ) RETURN
  483:       EPS = DLAMCH( 'Epsilon' )
  484:       HUGEVAL = DLAMCH( 'Overflow' )
  485: *     Force HUGEVAL to Inf
  486:       HUGEVAL = HUGEVAL * HUGEVAL
  487: *     Using HUGEVAL may lead to spurious underflows.
  488:       INCR_THRESH = DBLE( N ) * EPS
  489: 
  490:       IF ( LSAME ( UPLO, 'L' ) ) THEN
  491:          UPLO2 = ILAUPLO( 'L' )
  492:       ELSE
  493:          UPLO2 = ILAUPLO( 'U' )
  494:       ENDIF
  495: 
  496:       DO J = 1, NRHS
  497:          Y_PREC_STATE = EXTRA_RESIDUAL
  498:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  499:             DO I = 1, N
  500:                Y_TAIL( I ) = 0.0D+0
  501:             END DO
  502:          END IF
  503: 
  504:          DXRAT = 0.0D+0
  505:          DXRATMAX = 0.0D+0
  506:          DZRAT = 0.0D+0
  507:          DZRATMAX = 0.0D+0
  508:          FINAL_DX_X = HUGEVAL
  509:          FINAL_DZ_Z = HUGEVAL
  510:          PREVNORMDX = HUGEVAL
  511:          PREV_DZ_Z = HUGEVAL
  512:          DZ_Z = HUGEVAL
  513:          DX_X = HUGEVAL
  514: 
  515:          X_STATE = WORKING_STATE
  516:          Z_STATE = UNSTABLE_STATE
  517:          INCR_PREC = .FALSE.
  518: 
  519:          DO CNT = 1, ITHRESH
  520: *
  521: *         Compute residual RES = B_s - op(A_s) * Y,
  522: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
  523: *
  524:             CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
  525:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
  526:                CALL ZSYMV( UPLO, N, DCMPLX(-1.0D+0), A, LDA, Y(1,J), 1,
  527:      $              DCMPLX(1.0D+0), RES, 1 )
  528:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
  529:                CALL BLAS_ZSYMV_X( UPLO2, N, DCMPLX(-1.0D+0), A, LDA,
  530:      $              Y( 1, J ), 1, DCMPLX(1.0D+0), RES, 1, PREC_TYPE )
  531:             ELSE
  532:                CALL BLAS_ZSYMV2_X(UPLO2, N, DCMPLX(-1.0D+0), A, LDA,
  533:      $              Y(1, J), Y_TAIL, 1, DCMPLX(1.0D+0), RES, 1,
  534:      $     PREC_TYPE)
  535:             END IF
  536: 
  537: !         XXX: RES is no longer needed.
  538:             CALL ZCOPY( N, RES, 1, DY, 1 )
  539:             CALL ZSYTRS( UPLO, N, 1, AF, LDAF, IPIV, DY, N, INFO )
  540: *
  541: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  542: *
  543:             NORMX = 0.0D+0
  544:             NORMY = 0.0D+0
  545:             NORMDX = 0.0D+0
  546:             DZ_Z = 0.0D+0
  547:             YMIN = HUGEVAL
  548: 
  549:             DO I = 1, N
  550:                YK = CABS1( Y( I, J ) )
  551:                DYK = CABS1( DY( I ) )
  552: 
  553:                IF ( YK .NE. 0.0D+0 ) THEN
  554:                   DZ_Z = MAX( DZ_Z, DYK / YK )
  555:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  556:                   DZ_Z = HUGEVAL
  557:                END IF
  558: 
  559:                YMIN = MIN( YMIN, YK )
  560: 
  561:                NORMY = MAX( NORMY, YK )
  562: 
  563:                IF ( COLEQU ) THEN
  564:                   NORMX = MAX( NORMX, YK * C( I ) )
  565:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
  566:                ELSE
  567:                   NORMX = NORMY
  568:                   NORMDX = MAX( NORMDX, DYK )
  569:                END IF
  570:             END DO
  571: 
  572:             IF ( NORMX .NE. 0.0D+0 ) THEN
  573:                DX_X = NORMDX / NORMX
  574:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  575:                DX_X = 0.0D+0
  576:             ELSE
  577:                DX_X = HUGEVAL
  578:             END IF
  579: 
  580:             DXRAT = NORMDX / PREVNORMDX
  581:             DZRAT = DZ_Z / PREV_DZ_Z
  582: *
  583: *         Check termination criteria.
  584: *
  585:             IF ( YMIN*RCOND .LT. INCR_THRESH*NORMY
  586:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
  587:      $           INCR_PREC = .TRUE.
  588: 
  589:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  590:      $           X_STATE = WORKING_STATE
  591:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
  592:                IF ( DX_X .LE. EPS ) THEN
  593:                   X_STATE = CONV_STATE
  594:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  595:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  596:                      INCR_PREC = .TRUE.
  597:                   ELSE
  598:                      X_STATE = NOPROG_STATE
  599:                   END IF
  600:                ELSE
  601:                   IF (DXRAT .GT. DXRATMAX) DXRATMAX = DXRAT
  602:                END IF
  603:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  604:             END IF
  605: 
  606:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  607:      $           Z_STATE = WORKING_STATE
  608:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  609:      $           Z_STATE = WORKING_STATE
  610:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  611:                IF ( DZ_Z .LE. EPS ) THEN
  612:                   Z_STATE = CONV_STATE
  613:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  614:                   Z_STATE = UNSTABLE_STATE
  615:                   DZRATMAX = 0.0D+0
  616:                   FINAL_DZ_Z = HUGEVAL
  617:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  618:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  619:                      INCR_PREC = .TRUE.
  620:                   ELSE
  621:                      Z_STATE = NOPROG_STATE
  622:                   END IF
  623:                ELSE
  624:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  625:                END IF
  626:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  627:             END IF
  628: 
  629:             IF ( X_STATE.NE.WORKING_STATE.AND.
  630:      $           ( IGNORE_CWISE.OR.Z_STATE.NE.WORKING_STATE ) )
  631:      $           GOTO 666
  632: 
  633:             IF ( INCR_PREC ) THEN
  634:                INCR_PREC = .FALSE.
  635:                Y_PREC_STATE = Y_PREC_STATE + 1
  636:                DO I = 1, N
  637:                   Y_TAIL( I ) = 0.0D+0
  638:                END DO
  639:             END IF
  640: 
  641:             PREVNORMDX = NORMDX
  642:             PREV_DZ_Z = DZ_Z
  643: *
  644: *           Update soluton.
  645: *
  646:             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
  647:                CALL ZAXPY( N, DCMPLX(1.0D+0), DY, 1, Y(1,J), 1 )
  648:             ELSE
  649:                CALL ZLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
  650:             END IF
  651: 
  652:          END DO
  653: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
  654:  666     CONTINUE
  655: *
  656: *     Set final_* when cnt hits ithresh.
  657: *
  658:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  659:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  660: *
  661: *     Compute error bounds.
  662: *
  663:          IF ( N_NORMS .GE. 1 ) THEN
  664:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
  665:      $           FINAL_DX_X / (1 - DXRATMAX)
  666:          END IF
  667:          IF ( N_NORMS .GE. 2 ) THEN
  668:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
  669:      $           FINAL_DZ_Z / (1 - DZRATMAX)
  670:          END IF
  671: *
  672: *     Compute componentwise relative backward error from formula
  673: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  674: *     where abs(Z) is the componentwise absolute value of the matrix
  675: *     or vector Z.
  676: *
  677: *        Compute residual RES = B_s - op(A_s) * Y,
  678: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
  679: *
  680:          CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
  681:          CALL ZSYMV( UPLO, N, DCMPLX(-1.0D+0), A, LDA, Y(1,J), 1,
  682:      $        DCMPLX(1.0D+0), RES, 1 )
  683: 
  684:          DO I = 1, N
  685:             AYB( I ) = CABS1( B( I, J ) )
  686:          END DO
  687: *
  688: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
  689: *
  690:          CALL ZLA_SYAMV ( UPLO2, N, 1.0D+0,
  691:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
  692: 
  693:          CALL ZLA_LIN_BERR ( N, N, 1, RES, AYB, BERR_OUT( J ) )
  694: *
  695: *     End of loop for each RHS.
  696: *
  697:       END DO
  698: *
  699:       RETURN
  700:       END

CVSweb interface <joel.bertrand@systella.fr>