Annotation of rpl/lapack/lapack/zla_syrfsx_extended.f, revision 1.10

1.9       bertrand    1: *> \brief \b ZLA_SYRFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
1.5       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZLA_SYRFSX_EXTENDED + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_syrfsx_extended.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_syrfsx_extended.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_syrfsx_extended.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
                     22: *                                       AF, LDAF, IPIV, COLEQU, C, B, LDB,
                     23: *                                       Y, LDY, BERR_OUT, N_NORMS,
                     24: *                                       ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
                     25: *                                       AYB, DY, Y_TAIL, RCOND, ITHRESH,
                     26: *                                       RTHRESH, DZ_UB, IGNORE_CWISE,
                     27: *                                       INFO )
                     28: * 
                     29: *       .. Scalar Arguments ..
                     30: *       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
                     31: *      $                   N_NORMS, ITHRESH
                     32: *       CHARACTER          UPLO
                     33: *       LOGICAL            COLEQU, IGNORE_CWISE
                     34: *       DOUBLE PRECISION   RTHRESH, DZ_UB
                     35: *       ..
                     36: *       .. Array Arguments ..
                     37: *       INTEGER            IPIV( * )
                     38: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     39: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
                     40: *       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
                     41: *      $                   ERR_BNDS_NORM( NRHS, * ),
                     42: *      $                   ERR_BNDS_COMP( NRHS, * )
                     43: *       ..
                     44: *  
                     45: *
                     46: *> \par Purpose:
                     47: *  =============
                     48: *>
                     49: *> \verbatim
                     50: *>
                     51: *> ZLA_SYRFSX_EXTENDED improves the computed solution to a system of
                     52: *> linear equations by performing extra-precise iterative refinement
                     53: *> and provides error bounds and backward error estimates for the solution.
                     54: *> This subroutine is called by ZSYRFSX to perform iterative refinement.
                     55: *> In addition to normwise error bound, the code provides maximum
                     56: *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
                     57: *> and ERR_BNDS_COMP for details of the error bounds. Note that this
                     58: *> subroutine is only resonsible for setting the second fields of
                     59: *> ERR_BNDS_NORM and ERR_BNDS_COMP.
                     60: *> \endverbatim
                     61: *
                     62: *  Arguments:
                     63: *  ==========
                     64: *
                     65: *> \param[in] PREC_TYPE
                     66: *> \verbatim
                     67: *>          PREC_TYPE is INTEGER
                     68: *>     Specifies the intermediate precision to be used in refinement.
                     69: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and
                     70: *>     P    = 'S':  Single
                     71: *>          = 'D':  Double
                     72: *>          = 'I':  Indigenous
                     73: *>          = 'X', 'E':  Extra
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] UPLO
                     77: *> \verbatim
                     78: *>          UPLO is CHARACTER*1
                     79: *>       = 'U':  Upper triangle of A is stored;
                     80: *>       = 'L':  Lower triangle of A is stored.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] N
                     84: *> \verbatim
                     85: *>          N is INTEGER
                     86: *>     The number of linear equations, i.e., the order of the
                     87: *>     matrix A.  N >= 0.
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[in] NRHS
                     91: *> \verbatim
                     92: *>          NRHS is INTEGER
                     93: *>     The number of right-hand-sides, i.e., the number of columns of the
                     94: *>     matrix B.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in] A
                     98: *> \verbatim
                     99: *>          A is COMPLEX*16 array, dimension (LDA,N)
                    100: *>     On entry, the N-by-N matrix A.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] LDA
                    104: *> \verbatim
                    105: *>          LDA is INTEGER
                    106: *>     The leading dimension of the array A.  LDA >= max(1,N).
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in] AF
                    110: *> \verbatim
                    111: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
                    112: *>     The block diagonal matrix D and the multipliers used to
                    113: *>     obtain the factor U or L as computed by ZSYTRF.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] LDAF
                    117: *> \verbatim
                    118: *>          LDAF is INTEGER
                    119: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in] IPIV
                    123: *> \verbatim
                    124: *>          IPIV is INTEGER array, dimension (N)
                    125: *>     Details of the interchanges and the block structure of D
                    126: *>     as determined by ZSYTRF.
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[in] COLEQU
                    130: *> \verbatim
                    131: *>          COLEQU is LOGICAL
                    132: *>     If .TRUE. then column equilibration was done to A before calling
                    133: *>     this routine. This is needed to compute the solution and error
                    134: *>     bounds correctly.
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[in] C
                    138: *> \verbatim
                    139: *>          C is DOUBLE PRECISION array, dimension (N)
                    140: *>     The column scale factors for A. If COLEQU = .FALSE., C
                    141: *>     is not accessed. If C is input, each element of C should be a power
                    142: *>     of the radix to ensure a reliable solution and error estimates.
                    143: *>     Scaling by powers of the radix does not cause rounding errors unless
                    144: *>     the result underflows or overflows. Rounding errors during scaling
                    145: *>     lead to refining with a matrix that is not equivalent to the
                    146: *>     input matrix, producing error estimates that may not be
                    147: *>     reliable.
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[in] B
                    151: *> \verbatim
                    152: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    153: *>     The right-hand-side matrix B.
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[in] LDB
                    157: *> \verbatim
                    158: *>          LDB is INTEGER
                    159: *>     The leading dimension of the array B.  LDB >= max(1,N).
                    160: *> \endverbatim
                    161: *>
                    162: *> \param[in,out] Y
                    163: *> \verbatim
                    164: *>          Y is COMPLEX*16 array, dimension
                    165: *>                    (LDY,NRHS)
                    166: *>     On entry, the solution matrix X, as computed by ZSYTRS.
                    167: *>     On exit, the improved solution matrix Y.
                    168: *> \endverbatim
                    169: *>
                    170: *> \param[in] LDY
                    171: *> \verbatim
                    172: *>          LDY is INTEGER
                    173: *>     The leading dimension of the array Y.  LDY >= max(1,N).
                    174: *> \endverbatim
                    175: *>
                    176: *> \param[out] BERR_OUT
                    177: *> \verbatim
                    178: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
                    179: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
                    180: *>     error for right-hand-side j from the formula
                    181: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    182: *>     where abs(Z) is the componentwise absolute value of the matrix
                    183: *>     or vector Z. This is computed by ZLA_LIN_BERR.
                    184: *> \endverbatim
                    185: *>
                    186: *> \param[in] N_NORMS
                    187: *> \verbatim
                    188: *>          N_NORMS is INTEGER
                    189: *>     Determines which error bounds to return (see ERR_BNDS_NORM
                    190: *>     and ERR_BNDS_COMP).
                    191: *>     If N_NORMS >= 1 return normwise error bounds.
                    192: *>     If N_NORMS >= 2 return componentwise error bounds.
                    193: *> \endverbatim
                    194: *>
                    195: *> \param[in,out] ERR_BNDS_NORM
                    196: *> \verbatim
                    197: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension
                    198: *>                    (NRHS, N_ERR_BNDS)
                    199: *>     For each right-hand side, this array contains information about
                    200: *>     various error bounds and condition numbers corresponding to the
                    201: *>     normwise relative error, which is defined as follows:
                    202: *>
                    203: *>     Normwise relative error in the ith solution vector:
                    204: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
                    205: *>            ------------------------------
                    206: *>                  max_j abs(X(j,i))
                    207: *>
                    208: *>     The array is indexed by the type of error information as described
                    209: *>     below. There currently are up to three pieces of information
                    210: *>     returned.
                    211: *>
                    212: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
                    213: *>     right-hand side.
                    214: *>
                    215: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
                    216: *>     three fields:
                    217: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    218: *>              reciprocal condition number is less than the threshold
                    219: *>              sqrt(n) * slamch('Epsilon').
                    220: *>
                    221: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    222: *>              almost certainly within a factor of 10 of the true error
                    223: *>              so long as the next entry is greater than the threshold
                    224: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
                    225: *>              be trusted if the previous boolean is true.
                    226: *>
                    227: *>     err = 3  Reciprocal condition number: Estimated normwise
                    228: *>              reciprocal condition number.  Compared with the threshold
                    229: *>              sqrt(n) * slamch('Epsilon') to determine if the error
                    230: *>              estimate is "guaranteed". These reciprocal condition
                    231: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    232: *>              appropriately scaled matrix Z.
                    233: *>              Let Z = S*A, where S scales each row by a power of the
                    234: *>              radix so all absolute row sums of Z are approximately 1.
                    235: *>
                    236: *>     This subroutine is only responsible for setting the second field
                    237: *>     above.
                    238: *>     See Lapack Working Note 165 for further details and extra
                    239: *>     cautions.
                    240: *> \endverbatim
                    241: *>
                    242: *> \param[in,out] ERR_BNDS_COMP
                    243: *> \verbatim
                    244: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension
                    245: *>                    (NRHS, N_ERR_BNDS)
                    246: *>     For each right-hand side, this array contains information about
                    247: *>     various error bounds and condition numbers corresponding to the
                    248: *>     componentwise relative error, which is defined as follows:
                    249: *>
                    250: *>     Componentwise relative error in the ith solution vector:
                    251: *>                    abs(XTRUE(j,i) - X(j,i))
                    252: *>             max_j ----------------------
                    253: *>                         abs(X(j,i))
                    254: *>
                    255: *>     The array is indexed by the right-hand side i (on which the
                    256: *>     componentwise relative error depends), and the type of error
                    257: *>     information as described below. There currently are up to three
                    258: *>     pieces of information returned for each right-hand side. If
                    259: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
                    260: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
                    261: *>     the first (:,N_ERR_BNDS) entries are returned.
                    262: *>
                    263: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
                    264: *>     right-hand side.
                    265: *>
                    266: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
                    267: *>     three fields:
                    268: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    269: *>              reciprocal condition number is less than the threshold
                    270: *>              sqrt(n) * slamch('Epsilon').
                    271: *>
                    272: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    273: *>              almost certainly within a factor of 10 of the true error
                    274: *>              so long as the next entry is greater than the threshold
                    275: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
                    276: *>              be trusted if the previous boolean is true.
                    277: *>
                    278: *>     err = 3  Reciprocal condition number: Estimated componentwise
                    279: *>              reciprocal condition number.  Compared with the threshold
                    280: *>              sqrt(n) * slamch('Epsilon') to determine if the error
                    281: *>              estimate is "guaranteed". These reciprocal condition
                    282: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    283: *>              appropriately scaled matrix Z.
                    284: *>              Let Z = S*(A*diag(x)), where x is the solution for the
                    285: *>              current right-hand side and S scales each row of
                    286: *>              A*diag(x) by a power of the radix so all absolute row
                    287: *>              sums of Z are approximately 1.
                    288: *>
                    289: *>     This subroutine is only responsible for setting the second field
                    290: *>     above.
                    291: *>     See Lapack Working Note 165 for further details and extra
                    292: *>     cautions.
                    293: *> \endverbatim
                    294: *>
                    295: *> \param[in] RES
                    296: *> \verbatim
                    297: *>          RES is COMPLEX*16 array, dimension (N)
                    298: *>     Workspace to hold the intermediate residual.
                    299: *> \endverbatim
                    300: *>
                    301: *> \param[in] AYB
                    302: *> \verbatim
                    303: *>          AYB is DOUBLE PRECISION array, dimension (N)
                    304: *>     Workspace.
                    305: *> \endverbatim
                    306: *>
                    307: *> \param[in] DY
                    308: *> \verbatim
                    309: *>          DY is COMPLEX*16 array, dimension (N)
                    310: *>     Workspace to hold the intermediate solution.
                    311: *> \endverbatim
                    312: *>
                    313: *> \param[in] Y_TAIL
                    314: *> \verbatim
                    315: *>          Y_TAIL is COMPLEX*16 array, dimension (N)
                    316: *>     Workspace to hold the trailing bits of the intermediate solution.
                    317: *> \endverbatim
                    318: *>
                    319: *> \param[in] RCOND
                    320: *> \verbatim
                    321: *>          RCOND is DOUBLE PRECISION
                    322: *>     Reciprocal scaled condition number.  This is an estimate of the
                    323: *>     reciprocal Skeel condition number of the matrix A after
                    324: *>     equilibration (if done).  If this is less than the machine
                    325: *>     precision (in particular, if it is zero), the matrix is singular
                    326: *>     to working precision.  Note that the error may still be small even
                    327: *>     if this number is very small and the matrix appears ill-
                    328: *>     conditioned.
                    329: *> \endverbatim
                    330: *>
                    331: *> \param[in] ITHRESH
                    332: *> \verbatim
                    333: *>          ITHRESH is INTEGER
                    334: *>     The maximum number of residual computations allowed for
                    335: *>     refinement. The default is 10. For 'aggressive' set to 100 to
                    336: *>     permit convergence using approximate factorizations or
                    337: *>     factorizations other than LU. If the factorization uses a
                    338: *>     technique other than Gaussian elimination, the guarantees in
                    339: *>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
                    340: *> \endverbatim
                    341: *>
                    342: *> \param[in] RTHRESH
                    343: *> \verbatim
                    344: *>          RTHRESH is DOUBLE PRECISION
                    345: *>     Determines when to stop refinement if the error estimate stops
                    346: *>     decreasing. Refinement will stop when the next solution no longer
                    347: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
                    348: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
                    349: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
                    350: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
                    351: *>     for more details.
                    352: *> \endverbatim
                    353: *>
                    354: *> \param[in] DZ_UB
                    355: *> \verbatim
                    356: *>          DZ_UB is DOUBLE PRECISION
                    357: *>     Determines when to start considering componentwise convergence.
                    358: *>     Componentwise convergence is only considered after each component
                    359: *>     of the solution Y is stable, which we definte as the relative
                    360: *>     change in each component being less than DZ_UB. The default value
                    361: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
                    362: *>     more details.
                    363: *> \endverbatim
                    364: *>
                    365: *> \param[in] IGNORE_CWISE
                    366: *> \verbatim
                    367: *>          IGNORE_CWISE is LOGICAL
                    368: *>     If .TRUE. then ignore componentwise convergence. Default value
                    369: *>     is .FALSE..
                    370: *> \endverbatim
                    371: *>
                    372: *> \param[out] INFO
                    373: *> \verbatim
                    374: *>          INFO is INTEGER
                    375: *>       = 0:  Successful exit.
1.7       bertrand  376: *>       < 0:  if INFO = -i, the ith argument to ZLA_HERFSX_EXTENDED had an illegal
1.5       bertrand  377: *>             value
                    378: *> \endverbatim
                    379: *
                    380: *  Authors:
                    381: *  ========
                    382: *
                    383: *> \author Univ. of Tennessee 
                    384: *> \author Univ. of California Berkeley 
                    385: *> \author Univ. of Colorado Denver 
                    386: *> \author NAG Ltd. 
                    387: *
1.9       bertrand  388: *> \date September 2012
1.5       bertrand  389: *
                    390: *> \ingroup complex16SYcomputational
                    391: *
                    392: *  =====================================================================
1.1       bertrand  393:       SUBROUTINE ZLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
                    394:      $                                AF, LDAF, IPIV, COLEQU, C, B, LDB,
                    395:      $                                Y, LDY, BERR_OUT, N_NORMS,
                    396:      $                                ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
                    397:      $                                AYB, DY, Y_TAIL, RCOND, ITHRESH,
                    398:      $                                RTHRESH, DZ_UB, IGNORE_CWISE,
                    399:      $                                INFO )
                    400: *
1.9       bertrand  401: *  -- LAPACK computational routine (version 3.4.2) --
1.5       bertrand  402: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    403: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  404: *     September 2012
1.1       bertrand  405: *
                    406: *     .. Scalar Arguments ..
                    407:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
                    408:      $                   N_NORMS, ITHRESH
                    409:       CHARACTER          UPLO
                    410:       LOGICAL            COLEQU, IGNORE_CWISE
                    411:       DOUBLE PRECISION   RTHRESH, DZ_UB
                    412: *     ..
                    413: *     .. Array Arguments ..
                    414:       INTEGER            IPIV( * )
                    415:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    416:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
                    417:       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
                    418:      $                   ERR_BNDS_NORM( NRHS, * ),
                    419:      $                   ERR_BNDS_COMP( NRHS, * )
                    420: *     ..
                    421: *
                    422: *  =====================================================================
                    423: *
                    424: *     .. Local Scalars ..
                    425:       INTEGER            UPLO2, CNT, I, J, X_STATE, Z_STATE,
                    426:      $                   Y_PREC_STATE
                    427:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
                    428:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
                    429:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
                    430:      $                   EPS, HUGEVAL, INCR_THRESH
1.7       bertrand  431:       LOGICAL            INCR_PREC, UPPER
1.1       bertrand  432:       COMPLEX*16         ZDUM
                    433: *     ..
                    434: *     .. Parameters ..
                    435:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
                    436:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
                    437:      $                   EXTRA_Y
                    438:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
                    439:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
                    440:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
                    441:      $                   EXTRA_Y = 2 )
                    442:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
                    443:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
                    444:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
                    445:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
                    446:      $                   BERR_I = 3 )
                    447:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
                    448:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
                    449:      $                   PIV_GROWTH_I = 9 )
                    450:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    451:      $                   LA_LINRX_CWISE_I
                    452:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    453:      $                   LA_LINRX_ITHRESH_I = 2 )
                    454:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    455:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    456:      $                   LA_LINRX_RCOND_I
                    457:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    458:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    459: *     ..
                    460: *     .. External Functions ..
                    461:       LOGICAL            LSAME
                    462:       EXTERNAL           ILAUPLO
                    463:       INTEGER            ILAUPLO
                    464: *     ..
                    465: *     .. External Subroutines ..
                    466:       EXTERNAL           ZAXPY, ZCOPY, ZSYTRS, ZSYMV, BLAS_ZSYMV_X,
                    467:      $                   BLAS_ZSYMV2_X, ZLA_SYAMV, ZLA_WWADDW,
                    468:      $                   ZLA_LIN_BERR
                    469:       DOUBLE PRECISION   DLAMCH
                    470: *     ..
                    471: *     .. Intrinsic Functions ..
                    472:       INTRINSIC          ABS, REAL, DIMAG, MAX, MIN
                    473: *     ..
                    474: *     .. Statement Functions ..
                    475:       DOUBLE PRECISION   CABS1
                    476: *     ..
                    477: *     .. Statement Function Definitions ..
                    478:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    479: *     ..
                    480: *     .. Executable Statements ..
                    481: *
1.7       bertrand  482:       INFO = 0
                    483:       UPPER = LSAME( UPLO, 'U' )
                    484:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    485:          INFO = -2
                    486:       ELSE IF( N.LT.0 ) THEN
                    487:          INFO = -3
                    488:       ELSE IF( NRHS.LT.0 ) THEN
                    489:          INFO = -4
                    490:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    491:          INFO = -6
                    492:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    493:          INFO = -8
                    494:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    495:          INFO = -13
                    496:       ELSE IF( LDY.LT.MAX( 1, N ) ) THEN
                    497:          INFO = -15
                    498:       END IF
                    499:       IF( INFO.NE.0 ) THEN
                    500:          CALL XERBLA( 'ZLA_HERFSX_EXTENDED', -INFO )
                    501:          RETURN
                    502:       END IF
1.1       bertrand  503:       EPS = DLAMCH( 'Epsilon' )
                    504:       HUGEVAL = DLAMCH( 'Overflow' )
                    505: *     Force HUGEVAL to Inf
                    506:       HUGEVAL = HUGEVAL * HUGEVAL
                    507: *     Using HUGEVAL may lead to spurious underflows.
                    508:       INCR_THRESH = DBLE( N ) * EPS
                    509: 
                    510:       IF ( LSAME ( UPLO, 'L' ) ) THEN
                    511:          UPLO2 = ILAUPLO( 'L' )
                    512:       ELSE
                    513:          UPLO2 = ILAUPLO( 'U' )
                    514:       ENDIF
                    515: 
                    516:       DO J = 1, NRHS
                    517:          Y_PREC_STATE = EXTRA_RESIDUAL
                    518:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
                    519:             DO I = 1, N
                    520:                Y_TAIL( I ) = 0.0D+0
                    521:             END DO
                    522:          END IF
                    523: 
                    524:          DXRAT = 0.0D+0
                    525:          DXRATMAX = 0.0D+0
                    526:          DZRAT = 0.0D+0
                    527:          DZRATMAX = 0.0D+0
                    528:          FINAL_DX_X = HUGEVAL
                    529:          FINAL_DZ_Z = HUGEVAL
                    530:          PREVNORMDX = HUGEVAL
                    531:          PREV_DZ_Z = HUGEVAL
                    532:          DZ_Z = HUGEVAL
                    533:          DX_X = HUGEVAL
                    534: 
                    535:          X_STATE = WORKING_STATE
                    536:          Z_STATE = UNSTABLE_STATE
                    537:          INCR_PREC = .FALSE.
                    538: 
                    539:          DO CNT = 1, ITHRESH
                    540: *
                    541: *         Compute residual RES = B_s - op(A_s) * Y,
                    542: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
                    543: *
                    544:             CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
                    545:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
                    546:                CALL ZSYMV( UPLO, N, DCMPLX(-1.0D+0), A, LDA, Y(1,J), 1,
                    547:      $              DCMPLX(1.0D+0), RES, 1 )
                    548:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
                    549:                CALL BLAS_ZSYMV_X( UPLO2, N, DCMPLX(-1.0D+0), A, LDA,
                    550:      $              Y( 1, J ), 1, DCMPLX(1.0D+0), RES, 1, PREC_TYPE )
                    551:             ELSE
                    552:                CALL BLAS_ZSYMV2_X(UPLO2, N, DCMPLX(-1.0D+0), A, LDA,
                    553:      $              Y(1, J), Y_TAIL, 1, DCMPLX(1.0D+0), RES, 1,
                    554:      $     PREC_TYPE)
                    555:             END IF
                    556: 
                    557: !         XXX: RES is no longer needed.
                    558:             CALL ZCOPY( N, RES, 1, DY, 1 )
                    559:             CALL ZSYTRS( UPLO, N, 1, AF, LDAF, IPIV, DY, N, INFO )
                    560: *
                    561: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
                    562: *
                    563:             NORMX = 0.0D+0
                    564:             NORMY = 0.0D+0
                    565:             NORMDX = 0.0D+0
                    566:             DZ_Z = 0.0D+0
                    567:             YMIN = HUGEVAL
                    568: 
                    569:             DO I = 1, N
                    570:                YK = CABS1( Y( I, J ) )
                    571:                DYK = CABS1( DY( I ) )
                    572: 
                    573:                IF ( YK .NE. 0.0D+0 ) THEN
                    574:                   DZ_Z = MAX( DZ_Z, DYK / YK )
                    575:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
                    576:                   DZ_Z = HUGEVAL
                    577:                END IF
                    578: 
                    579:                YMIN = MIN( YMIN, YK )
                    580: 
                    581:                NORMY = MAX( NORMY, YK )
                    582: 
                    583:                IF ( COLEQU ) THEN
                    584:                   NORMX = MAX( NORMX, YK * C( I ) )
                    585:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
                    586:                ELSE
                    587:                   NORMX = NORMY
                    588:                   NORMDX = MAX( NORMDX, DYK )
                    589:                END IF
                    590:             END DO
                    591: 
                    592:             IF ( NORMX .NE. 0.0D+0 ) THEN
                    593:                DX_X = NORMDX / NORMX
                    594:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
                    595:                DX_X = 0.0D+0
                    596:             ELSE
                    597:                DX_X = HUGEVAL
                    598:             END IF
                    599: 
                    600:             DXRAT = NORMDX / PREVNORMDX
                    601:             DZRAT = DZ_Z / PREV_DZ_Z
                    602: *
                    603: *         Check termination criteria.
                    604: *
                    605:             IF ( YMIN*RCOND .LT. INCR_THRESH*NORMY
                    606:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
                    607:      $           INCR_PREC = .TRUE.
                    608: 
                    609:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
                    610:      $           X_STATE = WORKING_STATE
                    611:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
                    612:                IF ( DX_X .LE. EPS ) THEN
                    613:                   X_STATE = CONV_STATE
                    614:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
                    615:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    616:                      INCR_PREC = .TRUE.
                    617:                   ELSE
                    618:                      X_STATE = NOPROG_STATE
                    619:                   END IF
                    620:                ELSE
                    621:                   IF (DXRAT .GT. DXRATMAX) DXRATMAX = DXRAT
                    622:                END IF
                    623:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
                    624:             END IF
                    625: 
                    626:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
                    627:      $           Z_STATE = WORKING_STATE
                    628:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
                    629:      $           Z_STATE = WORKING_STATE
                    630:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
                    631:                IF ( DZ_Z .LE. EPS ) THEN
                    632:                   Z_STATE = CONV_STATE
                    633:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
                    634:                   Z_STATE = UNSTABLE_STATE
                    635:                   DZRATMAX = 0.0D+0
                    636:                   FINAL_DZ_Z = HUGEVAL
                    637:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
                    638:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    639:                      INCR_PREC = .TRUE.
                    640:                   ELSE
                    641:                      Z_STATE = NOPROG_STATE
                    642:                   END IF
                    643:                ELSE
                    644:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
                    645:                END IF
                    646:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    647:             END IF
                    648: 
                    649:             IF ( X_STATE.NE.WORKING_STATE.AND.
                    650:      $           ( IGNORE_CWISE.OR.Z_STATE.NE.WORKING_STATE ) )
                    651:      $           GOTO 666
                    652: 
                    653:             IF ( INCR_PREC ) THEN
                    654:                INCR_PREC = .FALSE.
                    655:                Y_PREC_STATE = Y_PREC_STATE + 1
                    656:                DO I = 1, N
                    657:                   Y_TAIL( I ) = 0.0D+0
                    658:                END DO
                    659:             END IF
                    660: 
                    661:             PREVNORMDX = NORMDX
                    662:             PREV_DZ_Z = DZ_Z
                    663: *
                    664: *           Update soluton.
                    665: *
                    666:             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
                    667:                CALL ZAXPY( N, DCMPLX(1.0D+0), DY, 1, Y(1,J), 1 )
                    668:             ELSE
                    669:                CALL ZLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
                    670:             END IF
                    671: 
                    672:          END DO
                    673: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
                    674:  666     CONTINUE
                    675: *
                    676: *     Set final_* when cnt hits ithresh.
                    677: *
                    678:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
                    679:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    680: *
                    681: *     Compute error bounds.
                    682: *
                    683:          IF ( N_NORMS .GE. 1 ) THEN
                    684:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
                    685:      $           FINAL_DX_X / (1 - DXRATMAX)
                    686:          END IF
                    687:          IF ( N_NORMS .GE. 2 ) THEN
                    688:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
                    689:      $           FINAL_DZ_Z / (1 - DZRATMAX)
                    690:          END IF
                    691: *
                    692: *     Compute componentwise relative backward error from formula
                    693: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    694: *     where abs(Z) is the componentwise absolute value of the matrix
                    695: *     or vector Z.
                    696: *
                    697: *        Compute residual RES = B_s - op(A_s) * Y,
                    698: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
                    699: *
                    700:          CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
                    701:          CALL ZSYMV( UPLO, N, DCMPLX(-1.0D+0), A, LDA, Y(1,J), 1,
                    702:      $        DCMPLX(1.0D+0), RES, 1 )
                    703: 
                    704:          DO I = 1, N
                    705:             AYB( I ) = CABS1( B( I, J ) )
                    706:          END DO
                    707: *
                    708: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
                    709: *
                    710:          CALL ZLA_SYAMV ( UPLO2, N, 1.0D+0,
                    711:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
                    712: 
                    713:          CALL ZLA_LIN_BERR ( N, N, 1, RES, AYB, BERR_OUT( J ) )
                    714: *
                    715: *     End of loop for each RHS.
                    716: *
                    717:       END DO
                    718: *
                    719:       RETURN
                    720:       END

CVSweb interface <joel.bertrand@systella.fr>