File:  [local] / rpl / lapack / lapack / zla_syrcond_c.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:16 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       DOUBLE PRECISION FUNCTION ZLA_SYRCOND_C( UPLO, N, A, LDA, AF,
    2:      $                                         LDAF, IPIV, C, CAPPLY,
    3:      $                                         INFO, WORK, RWORK )
    4: *
    5: *     -- LAPACK routine (version 3.2.1)                                 --
    6: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    7: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    8: *     -- April 2009                                                   --
    9: *
   10: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   11: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   12: *
   13:       IMPLICIT NONE
   14: *     ..
   15: *     .. Scalar Arguments ..
   16:       CHARACTER          UPLO
   17:       LOGICAL            CAPPLY
   18:       INTEGER            N, LDA, LDAF, INFO
   19: *     ..
   20: *     .. Array Arguments ..
   21:       INTEGER            IPIV( * )
   22:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * )
   23:       DOUBLE PRECISION   C( * ), RWORK( * )
   24: *     ..
   25: *
   26: *  Purpose
   27: *  =======
   28: *
   29: *     ZLA_SYRCOND_C Computes the infinity norm condition number of
   30: *     op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *     UPLO    (input) CHARACTER*1
   36: *       = 'U':  Upper triangle of A is stored;
   37: *       = 'L':  Lower triangle of A is stored.
   38: *
   39: *     N       (input) INTEGER
   40: *     The number of linear equations, i.e., the order of the
   41: *     matrix A.  N >= 0.
   42: *
   43: *     A       (input) COMPLEX*16 array, dimension (LDA,N)
   44: *     On entry, the N-by-N matrix A
   45: *
   46: *     LDA     (input) INTEGER
   47: *     The leading dimension of the array A.  LDA >= max(1,N).
   48: *
   49: *     AF      (input) COMPLEX*16 array, dimension (LDAF,N)
   50: *     The block diagonal matrix D and the multipliers used to
   51: *     obtain the factor U or L as computed by ZSYTRF.
   52: *
   53: *     LDAF    (input) INTEGER
   54: *     The leading dimension of the array AF.  LDAF >= max(1,N).
   55: *
   56: *     IPIV    (input) INTEGER array, dimension (N)
   57: *     Details of the interchanges and the block structure of D
   58: *     as determined by ZSYTRF.
   59: *
   60: *     C       (input) DOUBLE PRECISION array, dimension (N)
   61: *     The vector C in the formula op(A) * inv(diag(C)).
   62: *
   63: *     CAPPLY  (input) LOGICAL
   64: *     If .TRUE. then access the vector C in the formula above.
   65: *
   66: *     INFO    (output) INTEGER
   67: *       = 0:  Successful exit.
   68: *     i > 0:  The ith argument is invalid.
   69: *
   70: *     WORK    (input) COMPLEX*16 array, dimension (2*N).
   71: *     Workspace.
   72: *
   73: *     RWORK   (input) DOUBLE PRECISION array, dimension (N).
   74: *     Workspace.
   75: *
   76: *  =====================================================================
   77: *
   78: *     .. Local Scalars ..
   79:       INTEGER            KASE
   80:       DOUBLE PRECISION   AINVNM, ANORM, TMP
   81:       INTEGER            I, J
   82:       LOGICAL            UP
   83:       COMPLEX*16         ZDUM
   84: *     ..
   85: *     .. Local Arrays ..
   86:       INTEGER            ISAVE( 3 )
   87: *     ..
   88: *     .. External Functions ..
   89:       LOGICAL            LSAME
   90:       EXTERNAL           LSAME
   91: *     ..
   92: *     .. External Subroutines ..
   93:       EXTERNAL           ZLACN2, ZSYTRS, XERBLA
   94: *     ..
   95: *     .. Intrinsic Functions ..
   96:       INTRINSIC          ABS, MAX
   97: *     ..
   98: *     .. Statement Functions ..
   99:       DOUBLE PRECISION CABS1
  100: *     ..
  101: *     .. Statement Function Definitions ..
  102:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  103: *     ..
  104: *     .. Executable Statements ..
  105: *
  106:       ZLA_SYRCOND_C = 0.0D+0
  107: *
  108:       INFO = 0
  109:       IF( N.LT.0 ) THEN
  110:          INFO = -2
  111:       END IF
  112:       IF( INFO.NE.0 ) THEN
  113:          CALL XERBLA( 'ZLA_SYRCOND_C', -INFO )
  114:          RETURN
  115:       END IF
  116:       UP = .FALSE.
  117:       IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
  118: *
  119: *     Compute norm of op(A)*op2(C).
  120: *
  121:       ANORM = 0.0D+0
  122:       IF ( UP ) THEN
  123:          DO I = 1, N
  124:             TMP = 0.0D+0
  125:             IF ( CAPPLY ) THEN
  126:                DO J = 1, I
  127:                   TMP = TMP + CABS1( A( J, I ) ) / C( J )
  128:                END DO
  129:                DO J = I+1, N
  130:                   TMP = TMP + CABS1( A( I, J ) ) / C( J )
  131:                END DO
  132:             ELSE
  133:                DO J = 1, I
  134:                   TMP = TMP + CABS1( A( J, I ) )
  135:                END DO
  136:                DO J = I+1, N
  137:                   TMP = TMP + CABS1( A( I, J ) )
  138:                END DO
  139:             END IF
  140:             RWORK( I ) = TMP
  141:             ANORM = MAX( ANORM, TMP )
  142:          END DO
  143:       ELSE
  144:          DO I = 1, N
  145:             TMP = 0.0D+0
  146:             IF ( CAPPLY ) THEN
  147:                DO J = 1, I
  148:                   TMP = TMP + CABS1( A( I, J ) ) / C( J )
  149:                END DO
  150:                DO J = I+1, N
  151:                   TMP = TMP + CABS1( A( J, I ) ) / C( J )
  152:                END DO
  153:             ELSE
  154:                DO J = 1, I
  155:                   TMP = TMP + CABS1( A( I, J ) )
  156:                END DO
  157:                DO J = I+1, N
  158:                   TMP = TMP + CABS1( A( J, I ) )
  159:                END DO
  160:             END IF
  161:             RWORK( I ) = TMP
  162:             ANORM = MAX( ANORM, TMP )
  163:          END DO
  164:       END IF
  165: *
  166: *     Quick return if possible.
  167: *
  168:       IF( N.EQ.0 ) THEN
  169:          ZLA_SYRCOND_C = 1.0D+0
  170:          RETURN
  171:       ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
  172:          RETURN
  173:       END IF
  174: *
  175: *     Estimate the norm of inv(op(A)).
  176: *
  177:       AINVNM = 0.0D+0
  178: *
  179:       KASE = 0
  180:    10 CONTINUE
  181:       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  182:       IF( KASE.NE.0 ) THEN
  183:          IF( KASE.EQ.2 ) THEN
  184: *
  185: *           Multiply by R.
  186: *
  187:             DO I = 1, N
  188:                WORK( I ) = WORK( I ) * RWORK( I )
  189:             END DO
  190: *
  191:             IF ( UP ) THEN
  192:                CALL ZSYTRS( 'U', N, 1, AF, LDAF, IPIV,
  193:      $            WORK, N, INFO )
  194:             ELSE
  195:                CALL ZSYTRS( 'L', N, 1, AF, LDAF, IPIV,
  196:      $            WORK, N, INFO )
  197:             ENDIF
  198: *
  199: *           Multiply by inv(C).
  200: *
  201:             IF ( CAPPLY ) THEN
  202:                DO I = 1, N
  203:                   WORK( I ) = WORK( I ) * C( I )
  204:                END DO
  205:             END IF
  206:          ELSE
  207: *
  208: *           Multiply by inv(C**T).
  209: *
  210:             IF ( CAPPLY ) THEN
  211:                DO I = 1, N
  212:                   WORK( I ) = WORK( I ) * C( I )
  213:                END DO
  214:             END IF
  215: *
  216:             IF ( UP ) THEN
  217:                CALL ZSYTRS( 'U', N, 1, AF, LDAF, IPIV,
  218:      $            WORK, N, INFO )
  219:             ELSE
  220:                CALL ZSYTRS( 'L', N, 1, AF, LDAF, IPIV,
  221:      $            WORK, N, INFO )
  222:             END IF
  223: *
  224: *           Multiply by R.
  225: *
  226:             DO I = 1, N
  227:                WORK( I ) = WORK( I ) * RWORK( I )
  228:             END DO
  229:          END IF
  230:          GO TO 10
  231:       END IF
  232: *
  233: *     Compute the estimate of the reciprocal condition number.
  234: *
  235:       IF( AINVNM .NE. 0.0D+0 )
  236:      $   ZLA_SYRCOND_C = 1.0D+0 / AINVNM
  237: *
  238:       RETURN
  239: *
  240:       END

CVSweb interface <joel.bertrand@systella.fr>