Annotation of rpl/lapack/lapack/zla_porpvgrw.f, revision 1.17

1.8       bertrand    1: *> \brief \b ZLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
1.5       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.13      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.5       bertrand    7: *
                      8: *> \htmlonly
1.13      bertrand    9: *> Download ZLA_PORPVGRW + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_porpvgrw.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_porpvgrw.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_porpvgrw.f">
1.5       bertrand   15: *> [TXT]</a>
1.13      bertrand   16: *> \endhtmlonly
1.5       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
1.13      bertrand   21: *       DOUBLE PRECISION FUNCTION ZLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF,
1.5       bertrand   22: *                                               LDAF, WORK )
1.13      bertrand   23: *
1.5       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER*1        UPLO
                     26: *       INTEGER            NCOLS, LDA, LDAF
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * )
                     30: *       DOUBLE PRECISION   WORK( * )
                     31: *       ..
1.13      bertrand   32: *
1.5       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
1.13      bertrand   39: *>
1.5       bertrand   40: *> ZLA_PORPVGRW computes the reciprocal pivot growth factor
                     41: *> norm(A)/norm(U). The "max absolute element" norm is used. If this is
                     42: *> much less than 1, the stability of the LU factorization of the
                     43: *> (equilibrated) matrix A could be poor. This also means that the
                     44: *> solution X, estimated condition numbers, and error bounds could be
                     45: *> unreliable.
                     46: *> \endverbatim
                     47: *
                     48: *  Arguments:
                     49: *  ==========
                     50: *
                     51: *> \param[in] UPLO
                     52: *> \verbatim
                     53: *>          UPLO is CHARACTER*1
                     54: *>       = 'U':  Upper triangle of A is stored;
                     55: *>       = 'L':  Lower triangle of A is stored.
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] NCOLS
                     59: *> \verbatim
                     60: *>          NCOLS is INTEGER
                     61: *>     The number of columns of the matrix A. NCOLS >= 0.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] A
                     65: *> \verbatim
                     66: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     67: *>     On entry, the N-by-N matrix A.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] LDA
                     71: *> \verbatim
                     72: *>          LDA is INTEGER
                     73: *>     The leading dimension of the array A.  LDA >= max(1,N).
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] AF
                     77: *> \verbatim
                     78: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
                     79: *>     The triangular factor U or L from the Cholesky factorization
                     80: *>     A = U**T*U or A = L*L**T, as computed by ZPOTRF.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] LDAF
                     84: *> \verbatim
                     85: *>          LDAF is INTEGER
                     86: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
                     87: *> \endverbatim
                     88: *>
1.16      bertrand   89: *> \param[out] WORK
1.5       bertrand   90: *> \verbatim
1.11      bertrand   91: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
1.5       bertrand   92: *> \endverbatim
                     93: *
                     94: *  Authors:
                     95: *  ========
                     96: *
1.13      bertrand   97: *> \author Univ. of Tennessee
                     98: *> \author Univ. of California Berkeley
                     99: *> \author Univ. of Colorado Denver
                    100: *> \author NAG Ltd.
1.5       bertrand  101: *
                    102: *> \ingroup complex16POcomputational
                    103: *
                    104: *  =====================================================================
1.13      bertrand  105:       DOUBLE PRECISION FUNCTION ZLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF,
1.1       bertrand  106:      $                                        LDAF, WORK )
                    107: *
1.17    ! bertrand  108: *  -- LAPACK computational routine --
1.5       bertrand  109: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    110: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.1       bertrand  111: *
                    112: *     .. Scalar Arguments ..
                    113:       CHARACTER*1        UPLO
                    114:       INTEGER            NCOLS, LDA, LDAF
                    115: *     ..
                    116: *     .. Array Arguments ..
                    117:       COMPLEX*16         A( LDA, * ), AF( LDAF, * )
                    118:       DOUBLE PRECISION   WORK( * )
                    119: *     ..
                    120: *
                    121: *  =====================================================================
                    122: *
                    123: *     .. Local Scalars ..
                    124:       INTEGER            I, J
                    125:       DOUBLE PRECISION   AMAX, UMAX, RPVGRW
                    126:       LOGICAL            UPPER
                    127:       COMPLEX*16         ZDUM
                    128: *     ..
                    129: *     .. External Functions ..
1.13      bertrand  130:       EXTERNAL           LSAME
1.1       bertrand  131:       LOGICAL            LSAME
                    132: *     ..
                    133: *     .. Intrinsic Functions ..
                    134:       INTRINSIC          ABS, MAX, MIN, REAL, DIMAG
                    135: *     ..
                    136: *     .. Statement Functions ..
                    137:       DOUBLE PRECISION   CABS1
                    138: *     ..
                    139: *     .. Statement Function Definitions ..
                    140:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    141: *     ..
                    142: *     .. Executable Statements ..
                    143:       UPPER = LSAME( 'Upper', UPLO )
                    144: *
                    145: *     DPOTRF will have factored only the NCOLSxNCOLS leading minor, so
                    146: *     we restrict the growth search to that minor and use only the first
                    147: *     2*NCOLS workspace entries.
                    148: *
                    149:       RPVGRW = 1.0D+0
                    150:       DO I = 1, 2*NCOLS
                    151:          WORK( I ) = 0.0D+0
                    152:       END DO
                    153: *
                    154: *     Find the max magnitude entry of each column.
                    155: *
                    156:       IF ( UPPER ) THEN
                    157:          DO J = 1, NCOLS
                    158:             DO I = 1, J
                    159:                WORK( NCOLS+J ) =
                    160:      $              MAX( CABS1( A( I, J ) ), WORK( NCOLS+J ) )
                    161:             END DO
                    162:          END DO
                    163:       ELSE
                    164:          DO J = 1, NCOLS
                    165:             DO I = J, NCOLS
                    166:                WORK( NCOLS+J ) =
                    167:      $              MAX( CABS1( A( I, J ) ), WORK( NCOLS+J ) )
                    168:             END DO
                    169:          END DO
                    170:       END IF
                    171: *
                    172: *     Now find the max magnitude entry of each column of the factor in
                    173: *     AF.  No pivoting, so no permutations.
                    174: *
                    175:       IF ( LSAME( 'Upper', UPLO ) ) THEN
                    176:          DO J = 1, NCOLS
                    177:             DO I = 1, J
                    178:                WORK( J ) = MAX( CABS1( AF( I, J ) ), WORK( J ) )
                    179:             END DO
                    180:          END DO
                    181:       ELSE
                    182:          DO J = 1, NCOLS
                    183:             DO I = J, NCOLS
                    184:                WORK( J ) = MAX( CABS1( AF( I, J ) ), WORK( J ) )
                    185:             END DO
                    186:          END DO
                    187:       END IF
                    188: *
                    189: *     Compute the *inverse* of the max element growth factor.  Dividing
                    190: *     by zero would imply the largest entry of the factor's column is
                    191: *     zero.  Than can happen when either the column of A is zero or
                    192: *     massive pivots made the factor underflow to zero.  Neither counts
                    193: *     as growth in itself, so simply ignore terms with zero
                    194: *     denominators.
                    195: *
                    196:       IF ( LSAME( 'Upper', UPLO ) ) THEN
                    197:          DO I = 1, NCOLS
                    198:             UMAX = WORK( I )
                    199:             AMAX = WORK( NCOLS+I )
                    200:             IF ( UMAX /= 0.0D+0 ) THEN
                    201:                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
                    202:             END IF
                    203:          END DO
                    204:       ELSE
                    205:          DO I = 1, NCOLS
                    206:             UMAX = WORK( I )
                    207:             AMAX = WORK( NCOLS+I )
                    208:             IF ( UMAX /= 0.0D+0 ) THEN
                    209:                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
                    210:             END IF
                    211:          END DO
                    212:       END IF
                    213: 
                    214:       ZLA_PORPVGRW = RPVGRW
1.17    ! bertrand  215: *
        !           216: *     End of ZLA_PORPVGRW
        !           217: *
1.1       bertrand  218:       END

CVSweb interface <joel.bertrand@systella.fr>