File:  [local] / rpl / lapack / lapack / zla_porfsx_extended.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:04:07 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE ZLA_PORFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
    2:      $                                AF, LDAF, COLEQU, C, B, LDB, Y,
    3:      $                                LDY, BERR_OUT, N_NORMS,
    4:      $                                ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
    5:      $                                AYB, DY, Y_TAIL, RCOND, ITHRESH,
    6:      $                                RTHRESH, DZ_UB, IGNORE_CWISE,
    7:      $                                INFO )
    8: *
    9: *     -- LAPACK routine (version 3.2.2)                                 --
   10: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
   11: *     -- Jason Riedy of Univ. of California Berkeley.                 --
   12: *     -- June 2010                                                    --
   13: *
   14: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   15: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   16: *
   17:       IMPLICIT NONE
   18: *     ..
   19: *     .. Scalar Arguments ..
   20:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
   21:      $                   N_NORMS, ITHRESH
   22:       CHARACTER          UPLO
   23:       LOGICAL            COLEQU, IGNORE_CWISE
   24:       DOUBLE PRECISION   RTHRESH, DZ_UB
   25: *     ..
   26: *     .. Array Arguments ..
   27:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   28:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
   29:       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
   30:      $                   ERR_BNDS_NORM( NRHS, * ),
   31:      $                   ERR_BNDS_COMP( NRHS, * )
   32: *     ..
   33: *
   34: *  Purpose
   35: *  =======
   36: *
   37: *  ZLA_PORFSX_EXTENDED improves the computed solution to a system of
   38: *  linear equations by performing extra-precise iterative refinement
   39: *  and provides error bounds and backward error estimates for the solution.
   40: *  This subroutine is called by ZPORFSX to perform iterative refinement.
   41: *  In addition to normwise error bound, the code provides maximum
   42: *  componentwise error bound if possible. See comments for ERR_BNDS_NORM
   43: *  and ERR_BNDS_COMP for details of the error bounds. Note that this
   44: *  subroutine is only resonsible for setting the second fields of
   45: *  ERR_BNDS_NORM and ERR_BNDS_COMP.
   46: *
   47: *  Arguments
   48: *  =========
   49: *
   50: *     PREC_TYPE      (input) INTEGER
   51: *     Specifies the intermediate precision to be used in refinement.
   52: *     The value is defined by ILAPREC(P) where P is a CHARACTER and
   53: *     P    = 'S':  Single
   54: *          = 'D':  Double
   55: *          = 'I':  Indigenous
   56: *          = 'X', 'E':  Extra
   57: *
   58: *     UPLO    (input) CHARACTER*1
   59: *       = 'U':  Upper triangle of A is stored;
   60: *       = 'L':  Lower triangle of A is stored.
   61: *
   62: *     N              (input) INTEGER
   63: *     The number of linear equations, i.e., the order of the
   64: *     matrix A.  N >= 0.
   65: *
   66: *     NRHS           (input) INTEGER
   67: *     The number of right-hand-sides, i.e., the number of columns of the
   68: *     matrix B.
   69: *
   70: *     A              (input) COMPLEX*16 array, dimension (LDA,N)
   71: *     On entry, the N-by-N matrix A.
   72: *
   73: *     LDA            (input) INTEGER
   74: *     The leading dimension of the array A.  LDA >= max(1,N).
   75: *
   76: *     AF             (input) COMPLEX*16 array, dimension (LDAF,N)
   77: *     The triangular factor U or L from the Cholesky factorization
   78: *     A = U**T*U or A = L*L**T, as computed by ZPOTRF.
   79: *
   80: *     LDAF           (input) INTEGER
   81: *     The leading dimension of the array AF.  LDAF >= max(1,N).
   82: *
   83: *     COLEQU         (input) LOGICAL
   84: *     If .TRUE. then column equilibration was done to A before calling
   85: *     this routine. This is needed to compute the solution and error
   86: *     bounds correctly.
   87: *
   88: *     C              (input) DOUBLE PRECISION array, dimension (N)
   89: *     The column scale factors for A. If COLEQU = .FALSE., C
   90: *     is not accessed. If C is input, each element of C should be a power
   91: *     of the radix to ensure a reliable solution and error estimates.
   92: *     Scaling by powers of the radix does not cause rounding errors unless
   93: *     the result underflows or overflows. Rounding errors during scaling
   94: *     lead to refining with a matrix that is not equivalent to the
   95: *     input matrix, producing error estimates that may not be
   96: *     reliable.
   97: *
   98: *     B              (input) COMPLEX*16 array, dimension (LDB,NRHS)
   99: *     The right-hand-side matrix B.
  100: *
  101: *     LDB            (input) INTEGER
  102: *     The leading dimension of the array B.  LDB >= max(1,N).
  103: *
  104: *     Y              (input/output) COMPLEX*16 array, dimension
  105: *                    (LDY,NRHS)
  106: *     On entry, the solution matrix X, as computed by ZPOTRS.
  107: *     On exit, the improved solution matrix Y.
  108: *
  109: *     LDY            (input) INTEGER
  110: *     The leading dimension of the array Y.  LDY >= max(1,N).
  111: *
  112: *     BERR_OUT       (output) DOUBLE PRECISION array, dimension (NRHS)
  113: *     On exit, BERR_OUT(j) contains the componentwise relative backward
  114: *     error for right-hand-side j from the formula
  115: *         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  116: *     where abs(Z) is the componentwise absolute value of the matrix
  117: *     or vector Z. This is computed by ZLA_LIN_BERR.
  118: *
  119: *     N_NORMS        (input) INTEGER
  120: *     Determines which error bounds to return (see ERR_BNDS_NORM
  121: *     and ERR_BNDS_COMP).
  122: *     If N_NORMS >= 1 return normwise error bounds.
  123: *     If N_NORMS >= 2 return componentwise error bounds.
  124: *
  125: *     ERR_BNDS_NORM  (input/output) DOUBLE PRECISION array, dimension
  126: *                    (NRHS, N_ERR_BNDS)
  127: *     For each right-hand side, this array contains information about
  128: *     various error bounds and condition numbers corresponding to the
  129: *     normwise relative error, which is defined as follows:
  130: *
  131: *     Normwise relative error in the ith solution vector:
  132: *             max_j (abs(XTRUE(j,i) - X(j,i)))
  133: *            ------------------------------
  134: *                  max_j abs(X(j,i))
  135: *
  136: *     The array is indexed by the type of error information as described
  137: *     below. There currently are up to three pieces of information
  138: *     returned.
  139: *
  140: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  141: *     right-hand side.
  142: *
  143: *     The second index in ERR_BNDS_NORM(:,err) contains the following
  144: *     three fields:
  145: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  146: *              reciprocal condition number is less than the threshold
  147: *              sqrt(n) * slamch('Epsilon').
  148: *
  149: *     err = 2 "Guaranteed" error bound: The estimated forward error,
  150: *              almost certainly within a factor of 10 of the true error
  151: *              so long as the next entry is greater than the threshold
  152: *              sqrt(n) * slamch('Epsilon'). This error bound should only
  153: *              be trusted if the previous boolean is true.
  154: *
  155: *     err = 3  Reciprocal condition number: Estimated normwise
  156: *              reciprocal condition number.  Compared with the threshold
  157: *              sqrt(n) * slamch('Epsilon') to determine if the error
  158: *              estimate is "guaranteed". These reciprocal condition
  159: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  160: *              appropriately scaled matrix Z.
  161: *              Let Z = S*A, where S scales each row by a power of the
  162: *              radix so all absolute row sums of Z are approximately 1.
  163: *
  164: *     This subroutine is only responsible for setting the second field
  165: *     above.
  166: *     See Lapack Working Note 165 for further details and extra
  167: *     cautions.
  168: *
  169: *     ERR_BNDS_COMP  (input/output) DOUBLE PRECISION array, dimension
  170: *                    (NRHS, N_ERR_BNDS)
  171: *     For each right-hand side, this array contains information about
  172: *     various error bounds and condition numbers corresponding to the
  173: *     componentwise relative error, which is defined as follows:
  174: *
  175: *     Componentwise relative error in the ith solution vector:
  176: *                    abs(XTRUE(j,i) - X(j,i))
  177: *             max_j ----------------------
  178: *                         abs(X(j,i))
  179: *
  180: *     The array is indexed by the right-hand side i (on which the
  181: *     componentwise relative error depends), and the type of error
  182: *     information as described below. There currently are up to three
  183: *     pieces of information returned for each right-hand side. If
  184: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  185: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
  186: *     the first (:,N_ERR_BNDS) entries are returned.
  187: *
  188: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  189: *     right-hand side.
  190: *
  191: *     The second index in ERR_BNDS_COMP(:,err) contains the following
  192: *     three fields:
  193: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  194: *              reciprocal condition number is less than the threshold
  195: *              sqrt(n) * slamch('Epsilon').
  196: *
  197: *     err = 2 "Guaranteed" error bound: The estimated forward error,
  198: *              almost certainly within a factor of 10 of the true error
  199: *              so long as the next entry is greater than the threshold
  200: *              sqrt(n) * slamch('Epsilon'). This error bound should only
  201: *              be trusted if the previous boolean is true.
  202: *
  203: *     err = 3  Reciprocal condition number: Estimated componentwise
  204: *              reciprocal condition number.  Compared with the threshold
  205: *              sqrt(n) * slamch('Epsilon') to determine if the error
  206: *              estimate is "guaranteed". These reciprocal condition
  207: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  208: *              appropriately scaled matrix Z.
  209: *              Let Z = S*(A*diag(x)), where x is the solution for the
  210: *              current right-hand side and S scales each row of
  211: *              A*diag(x) by a power of the radix so all absolute row
  212: *              sums of Z are approximately 1.
  213: *
  214: *     This subroutine is only responsible for setting the second field
  215: *     above.
  216: *     See Lapack Working Note 165 for further details and extra
  217: *     cautions.
  218: *
  219: *     RES            (input) COMPLEX*16 array, dimension (N)
  220: *     Workspace to hold the intermediate residual.
  221: *
  222: *     AYB            (input) DOUBLE PRECISION array, dimension (N)
  223: *     Workspace.
  224: *
  225: *     DY             (input) COMPLEX*16 PRECISION array, dimension (N)
  226: *     Workspace to hold the intermediate solution.
  227: *
  228: *     Y_TAIL         (input) COMPLEX*16 array, dimension (N)
  229: *     Workspace to hold the trailing bits of the intermediate solution.
  230: *
  231: *     RCOND          (input) DOUBLE PRECISION
  232: *     Reciprocal scaled condition number.  This is an estimate of the
  233: *     reciprocal Skeel condition number of the matrix A after
  234: *     equilibration (if done).  If this is less than the machine
  235: *     precision (in particular, if it is zero), the matrix is singular
  236: *     to working precision.  Note that the error may still be small even
  237: *     if this number is very small and the matrix appears ill-
  238: *     conditioned.
  239: *
  240: *     ITHRESH        (input) INTEGER
  241: *     The maximum number of residual computations allowed for
  242: *     refinement. The default is 10. For 'aggressive' set to 100 to
  243: *     permit convergence using approximate factorizations or
  244: *     factorizations other than LU. If the factorization uses a
  245: *     technique other than Gaussian elimination, the guarantees in
  246: *     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
  247: *
  248: *     RTHRESH        (input) DOUBLE PRECISION
  249: *     Determines when to stop refinement if the error estimate stops
  250: *     decreasing. Refinement will stop when the next solution no longer
  251: *     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  252: *     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  253: *     default value is 0.5. For 'aggressive' set to 0.9 to permit
  254: *     convergence on extremely ill-conditioned matrices. See LAWN 165
  255: *     for more details.
  256: *
  257: *     DZ_UB          (input) DOUBLE PRECISION
  258: *     Determines when to start considering componentwise convergence.
  259: *     Componentwise convergence is only considered after each component
  260: *     of the solution Y is stable, which we definte as the relative
  261: *     change in each component being less than DZ_UB. The default value
  262: *     is 0.25, requiring the first bit to be stable. See LAWN 165 for
  263: *     more details.
  264: *
  265: *     IGNORE_CWISE   (input) LOGICAL
  266: *     If .TRUE. then ignore componentwise convergence. Default value
  267: *     is .FALSE..
  268: *
  269: *     INFO           (output) INTEGER
  270: *       = 0:  Successful exit.
  271: *       < 0:  if INFO = -i, the ith argument to ZPOTRS had an illegal
  272: *             value
  273: *
  274: *  =====================================================================
  275: *
  276: *     .. Local Scalars ..
  277:       INTEGER            UPLO2, CNT, I, J, X_STATE, Z_STATE,
  278:      $                   Y_PREC_STATE
  279:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  280:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  281:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  282:      $                   EPS, HUGEVAL, INCR_THRESH
  283:       LOGICAL            INCR_PREC
  284:       COMPLEX*16         ZDUM
  285: *     ..
  286: *     .. Parameters ..
  287:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  288:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
  289:      $                   EXTRA_Y
  290:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  291:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
  292:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  293:      $                   EXTRA_Y = 2 )
  294:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  295:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  296:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  297:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  298:      $                   BERR_I = 3 )
  299:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  300:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  301:      $                   PIV_GROWTH_I = 9 )
  302:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  303:      $                   LA_LINRX_CWISE_I
  304:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  305:      $                   LA_LINRX_ITHRESH_I = 2 )
  306:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  307:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  308:      $                   LA_LINRX_RCOND_I
  309:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  310:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  311: *     ..
  312: *     .. External Functions ..
  313:       LOGICAL            LSAME
  314:       EXTERNAL           ILAUPLO
  315:       INTEGER            ILAUPLO
  316: *     ..
  317: *     .. External Subroutines ..
  318:       EXTERNAL           ZAXPY, ZCOPY, ZPOTRS, ZHEMV, BLAS_ZHEMV_X,
  319:      $                   BLAS_ZHEMV2_X, ZLA_HEAMV, ZLA_WWADDW,
  320:      $                   ZLA_LIN_BERR, DLAMCH
  321:       DOUBLE PRECISION   DLAMCH
  322: *     ..
  323: *     .. Intrinsic Functions ..
  324:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
  325: *     ..
  326: *     .. Statement Functions ..
  327:       DOUBLE PRECISION   CABS1
  328: *     ..
  329: *     .. Statement Function Definitions ..
  330:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  331: *     ..
  332: *     .. Executable Statements ..
  333: *
  334:       IF (INFO.NE.0) RETURN
  335:       EPS = DLAMCH( 'Epsilon' )
  336:       HUGEVAL = DLAMCH( 'Overflow' )
  337: *     Force HUGEVAL to Inf
  338:       HUGEVAL = HUGEVAL * HUGEVAL
  339: *     Using HUGEVAL may lead to spurious underflows.
  340:       INCR_THRESH = DBLE(N) * EPS
  341: 
  342:       IF (LSAME (UPLO, 'L')) THEN
  343:          UPLO2 = ILAUPLO( 'L' )
  344:       ELSE
  345:          UPLO2 = ILAUPLO( 'U' )
  346:       ENDIF
  347: 
  348:       DO J = 1, NRHS
  349:          Y_PREC_STATE = EXTRA_RESIDUAL
  350:          IF (Y_PREC_STATE .EQ. EXTRA_Y) THEN
  351:             DO I = 1, N
  352:                Y_TAIL( I ) = 0.0D+0
  353:             END DO
  354:          END IF
  355: 
  356:          DXRAT = 0.0D+0
  357:          DXRATMAX = 0.0D+0
  358:          DZRAT = 0.0D+0
  359:          DZRATMAX = 0.0D+0
  360:          FINAL_DX_X = HUGEVAL
  361:          FINAL_DZ_Z = HUGEVAL
  362:          PREVNORMDX = HUGEVAL
  363:          PREV_DZ_Z = HUGEVAL
  364:          DZ_Z = HUGEVAL
  365:          DX_X = HUGEVAL
  366: 
  367:          X_STATE = WORKING_STATE
  368:          Z_STATE = UNSTABLE_STATE
  369:          INCR_PREC = .FALSE.
  370: 
  371:          DO CNT = 1, ITHRESH
  372: *
  373: *         Compute residual RES = B_s - op(A_s) * Y,
  374: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
  375: *
  376:             CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
  377:             IF (Y_PREC_STATE .EQ. BASE_RESIDUAL) THEN
  378:                CALL ZHEMV(UPLO, N, DCMPLX(-1.0D+0), A, LDA, Y(1,J), 1,
  379:      $              DCMPLX(1.0D+0), RES, 1)
  380:             ELSE IF (Y_PREC_STATE .EQ. EXTRA_RESIDUAL) THEN
  381:                CALL BLAS_ZHEMV_X(UPLO2, N, DCMPLX(-1.0D+0), A, LDA,
  382:      $              Y( 1, J ), 1, DCMPLX(1.0D+0), RES, 1, PREC_TYPE)
  383:             ELSE
  384:                CALL BLAS_ZHEMV2_X(UPLO2, N, DCMPLX(-1.0D+0), A, LDA,
  385:      $              Y(1, J), Y_TAIL, 1, DCMPLX(1.0D+0), RES, 1,
  386:      $     PREC_TYPE)
  387:             END IF
  388: 
  389: !         XXX: RES is no longer needed.
  390:             CALL ZCOPY( N, RES, 1, DY, 1 )
  391:             CALL ZPOTRS( UPLO, N, 1, AF, LDAF, DY, N, INFO)
  392: *
  393: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  394: *
  395:             NORMX = 0.0D+0
  396:             NORMY = 0.0D+0
  397:             NORMDX = 0.0D+0
  398:             DZ_Z = 0.0D+0
  399:             YMIN = HUGEVAL
  400: 
  401:             DO I = 1, N
  402:                YK = CABS1(Y(I, J))
  403:                DYK = CABS1(DY(I))
  404: 
  405:                IF (YK .NE. 0.0D+0) THEN
  406:                   DZ_Z = MAX( DZ_Z, DYK / YK )
  407:                ELSE IF (DYK .NE. 0.0D+0) THEN
  408:                   DZ_Z = HUGEVAL
  409:                END IF
  410: 
  411:                YMIN = MIN( YMIN, YK )
  412: 
  413:                NORMY = MAX( NORMY, YK )
  414: 
  415:                IF ( COLEQU ) THEN
  416:                   NORMX = MAX(NORMX, YK * C(I))
  417:                   NORMDX = MAX(NORMDX, DYK * C(I))
  418:                ELSE
  419:                   NORMX = NORMY
  420:                   NORMDX = MAX(NORMDX, DYK)
  421:                END IF
  422:             END DO
  423: 
  424:             IF (NORMX .NE. 0.0D+0) THEN
  425:                DX_X = NORMDX / NORMX
  426:             ELSE IF (NORMDX .EQ. 0.0D+0) THEN
  427:                DX_X = 0.0D+0
  428:             ELSE
  429:                DX_X = HUGEVAL
  430:             END IF
  431: 
  432:             DXRAT = NORMDX / PREVNORMDX
  433:             DZRAT = DZ_Z / PREV_DZ_Z
  434: *
  435: *         Check termination criteria.
  436: *
  437:             IF (YMIN*RCOND .LT. INCR_THRESH*NORMY
  438:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y)
  439:      $           INCR_PREC = .TRUE.
  440: 
  441:             IF (X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH)
  442:      $           X_STATE = WORKING_STATE
  443:             IF (X_STATE .EQ. WORKING_STATE) THEN
  444:                IF (DX_X .LE. EPS) THEN
  445:                   X_STATE = CONV_STATE
  446:                ELSE IF (DXRAT .GT. RTHRESH) THEN
  447:                   IF (Y_PREC_STATE .NE. EXTRA_Y) THEN
  448:                      INCR_PREC = .TRUE.
  449:                   ELSE
  450:                      X_STATE = NOPROG_STATE
  451:                   END IF
  452:                ELSE
  453:                   IF (DXRAT .GT. DXRATMAX) DXRATMAX = DXRAT
  454:                END IF
  455:                IF (X_STATE .GT. WORKING_STATE) FINAL_DX_X = DX_X
  456:             END IF
  457: 
  458:             IF (Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB)
  459:      $           Z_STATE = WORKING_STATE
  460:             IF (Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH)
  461:      $           Z_STATE = WORKING_STATE
  462:             IF (Z_STATE .EQ. WORKING_STATE) THEN
  463:                IF (DZ_Z .LE. EPS) THEN
  464:                   Z_STATE = CONV_STATE
  465:                ELSE IF (DZ_Z .GT. DZ_UB) THEN
  466:                   Z_STATE = UNSTABLE_STATE
  467:                   DZRATMAX = 0.0D+0
  468:                   FINAL_DZ_Z = HUGEVAL
  469:                ELSE IF (DZRAT .GT. RTHRESH) THEN
  470:                   IF (Y_PREC_STATE .NE. EXTRA_Y) THEN
  471:                      INCR_PREC = .TRUE.
  472:                   ELSE
  473:                      Z_STATE = NOPROG_STATE
  474:                   END IF
  475:                ELSE
  476:                   IF (DZRAT .GT. DZRATMAX) DZRATMAX = DZRAT
  477:                END IF
  478:                IF (Z_STATE .GT. WORKING_STATE) FINAL_DZ_Z = DZ_Z
  479:             END IF
  480: 
  481:             IF ( X_STATE.NE.WORKING_STATE.AND.
  482:      $           (IGNORE_CWISE.OR.Z_STATE.NE.WORKING_STATE) )
  483:      $           GOTO 666
  484: 
  485:             IF (INCR_PREC) THEN
  486:                INCR_PREC = .FALSE.
  487:                Y_PREC_STATE = Y_PREC_STATE + 1
  488:                DO I = 1, N
  489:                   Y_TAIL( I ) = 0.0D+0
  490:                END DO
  491:             END IF
  492: 
  493:             PREVNORMDX = NORMDX
  494:             PREV_DZ_Z = DZ_Z
  495: *
  496: *           Update soluton.
  497: *
  498:             IF (Y_PREC_STATE .LT. EXTRA_Y) THEN
  499:                CALL ZAXPY( N, DCMPLX(1.0D+0), DY, 1, Y(1,J), 1 )
  500:             ELSE
  501:                CALL ZLA_WWADDW(N, Y(1,J), Y_TAIL, DY)
  502:             END IF
  503: 
  504:          END DO
  505: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
  506:  666     CONTINUE
  507: *
  508: *     Set final_* when cnt hits ithresh.
  509: *
  510:          IF (X_STATE .EQ. WORKING_STATE) FINAL_DX_X = DX_X
  511:          IF (Z_STATE .EQ. WORKING_STATE) FINAL_DZ_Z = DZ_Z
  512: *
  513: *     Compute error bounds.
  514: *
  515:          IF (N_NORMS .GE. 1) THEN
  516:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
  517:      $           FINAL_DX_X / (1 - DXRATMAX)
  518:          END IF
  519:          IF (N_NORMS .GE. 2) THEN
  520:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
  521:      $           FINAL_DZ_Z / (1 - DZRATMAX)
  522:          END IF
  523: *
  524: *     Compute componentwise relative backward error from formula
  525: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  526: *     where abs(Z) is the componentwise absolute value of the matrix
  527: *     or vector Z.
  528: *
  529: *        Compute residual RES = B_s - op(A_s) * Y,
  530: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
  531: *
  532:          CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
  533:          CALL ZHEMV(UPLO, N, DCMPLX(-1.0D+0), A, LDA, Y(1,J), 1,
  534:      $        DCMPLX(1.0D+0), RES, 1)
  535: 
  536:          DO I = 1, N
  537:             AYB( I ) = CABS1( B( I, J ) )
  538:          END DO
  539: *
  540: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
  541: *
  542:          CALL ZLA_HEAMV (UPLO2, N, 1.0D+0,
  543:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1)
  544: 
  545:          CALL ZLA_LIN_BERR (N, N, 1, RES, AYB, BERR_OUT(J))
  546: *
  547: *     End of loop for each RHS.
  548: *
  549:       END DO
  550: *
  551:       RETURN
  552:       END

CVSweb interface <joel.bertrand@systella.fr>