Annotation of rpl/lapack/lapack/zla_porfsx_extended.f, revision 1.6

1.5       bertrand    1: *> \brief \b ZLA_PORFSX_EXTENDED
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZLA_PORFSX_EXTENDED + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_porfsx_extended.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_porfsx_extended.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_porfsx_extended.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLA_PORFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
                     22: *                                       AF, LDAF, COLEQU, C, B, LDB, Y,
                     23: *                                       LDY, BERR_OUT, N_NORMS,
                     24: *                                       ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
                     25: *                                       AYB, DY, Y_TAIL, RCOND, ITHRESH,
                     26: *                                       RTHRESH, DZ_UB, IGNORE_CWISE,
                     27: *                                       INFO )
                     28: * 
                     29: *       .. Scalar Arguments ..
                     30: *       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
                     31: *      $                   N_NORMS, ITHRESH
                     32: *       CHARACTER          UPLO
                     33: *       LOGICAL            COLEQU, IGNORE_CWISE
                     34: *       DOUBLE PRECISION   RTHRESH, DZ_UB
                     35: *       ..
                     36: *       .. Array Arguments ..
                     37: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     38: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
                     39: *       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
                     40: *      $                   ERR_BNDS_NORM( NRHS, * ),
                     41: *      $                   ERR_BNDS_COMP( NRHS, * )
                     42: *       ..
                     43: *  
                     44: *
                     45: *> \par Purpose:
                     46: *  =============
                     47: *>
                     48: *> \verbatim
                     49: *>
                     50: *> ZLA_PORFSX_EXTENDED improves the computed solution to a system of
                     51: *> linear equations by performing extra-precise iterative refinement
                     52: *> and provides error bounds and backward error estimates for the solution.
                     53: *> This subroutine is called by ZPORFSX to perform iterative refinement.
                     54: *> In addition to normwise error bound, the code provides maximum
                     55: *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
                     56: *> and ERR_BNDS_COMP for details of the error bounds. Note that this
                     57: *> subroutine is only resonsible for setting the second fields of
                     58: *> ERR_BNDS_NORM and ERR_BNDS_COMP.
                     59: *> \endverbatim
                     60: *
                     61: *  Arguments:
                     62: *  ==========
                     63: *
                     64: *> \param[in] PREC_TYPE
                     65: *> \verbatim
                     66: *>          PREC_TYPE is INTEGER
                     67: *>     Specifies the intermediate precision to be used in refinement.
                     68: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and
                     69: *>     P    = 'S':  Single
                     70: *>          = 'D':  Double
                     71: *>          = 'I':  Indigenous
                     72: *>          = 'X', 'E':  Extra
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] UPLO
                     76: *> \verbatim
                     77: *>          UPLO is CHARACTER*1
                     78: *>       = 'U':  Upper triangle of A is stored;
                     79: *>       = 'L':  Lower triangle of A is stored.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] N
                     83: *> \verbatim
                     84: *>          N is INTEGER
                     85: *>     The number of linear equations, i.e., the order of the
                     86: *>     matrix A.  N >= 0.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] NRHS
                     90: *> \verbatim
                     91: *>          NRHS is INTEGER
                     92: *>     The number of right-hand-sides, i.e., the number of columns of the
                     93: *>     matrix B.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] A
                     97: *> \verbatim
                     98: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     99: *>     On entry, the N-by-N matrix A.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] LDA
                    103: *> \verbatim
                    104: *>          LDA is INTEGER
                    105: *>     The leading dimension of the array A.  LDA >= max(1,N).
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[in] AF
                    109: *> \verbatim
                    110: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
                    111: *>     The triangular factor U or L from the Cholesky factorization
                    112: *>     A = U**T*U or A = L*L**T, as computed by ZPOTRF.
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in] LDAF
                    116: *> \verbatim
                    117: *>          LDAF is INTEGER
                    118: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in] COLEQU
                    122: *> \verbatim
                    123: *>          COLEQU is LOGICAL
                    124: *>     If .TRUE. then column equilibration was done to A before calling
                    125: *>     this routine. This is needed to compute the solution and error
                    126: *>     bounds correctly.
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[in] C
                    130: *> \verbatim
                    131: *>          C is DOUBLE PRECISION array, dimension (N)
                    132: *>     The column scale factors for A. If COLEQU = .FALSE., C
                    133: *>     is not accessed. If C is input, each element of C should be a power
                    134: *>     of the radix to ensure a reliable solution and error estimates.
                    135: *>     Scaling by powers of the radix does not cause rounding errors unless
                    136: *>     the result underflows or overflows. Rounding errors during scaling
                    137: *>     lead to refining with a matrix that is not equivalent to the
                    138: *>     input matrix, producing error estimates that may not be
                    139: *>     reliable.
                    140: *> \endverbatim
                    141: *>
                    142: *> \param[in] B
                    143: *> \verbatim
                    144: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    145: *>     The right-hand-side matrix B.
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[in] LDB
                    149: *> \verbatim
                    150: *>          LDB is INTEGER
                    151: *>     The leading dimension of the array B.  LDB >= max(1,N).
                    152: *> \endverbatim
                    153: *>
                    154: *> \param[in,out] Y
                    155: *> \verbatim
                    156: *>          Y is COMPLEX*16 array, dimension
                    157: *>                    (LDY,NRHS)
                    158: *>     On entry, the solution matrix X, as computed by ZPOTRS.
                    159: *>     On exit, the improved solution matrix Y.
                    160: *> \endverbatim
                    161: *>
                    162: *> \param[in] LDY
                    163: *> \verbatim
                    164: *>          LDY is INTEGER
                    165: *>     The leading dimension of the array Y.  LDY >= max(1,N).
                    166: *> \endverbatim
                    167: *>
                    168: *> \param[out] BERR_OUT
                    169: *> \verbatim
                    170: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
                    171: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
                    172: *>     error for right-hand-side j from the formula
                    173: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    174: *>     where abs(Z) is the componentwise absolute value of the matrix
                    175: *>     or vector Z. This is computed by ZLA_LIN_BERR.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[in] N_NORMS
                    179: *> \verbatim
                    180: *>          N_NORMS is INTEGER
                    181: *>     Determines which error bounds to return (see ERR_BNDS_NORM
                    182: *>     and ERR_BNDS_COMP).
                    183: *>     If N_NORMS >= 1 return normwise error bounds.
                    184: *>     If N_NORMS >= 2 return componentwise error bounds.
                    185: *> \endverbatim
                    186: *>
                    187: *> \param[in,out] ERR_BNDS_NORM
                    188: *> \verbatim
                    189: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension
                    190: *>                    (NRHS, N_ERR_BNDS)
                    191: *>     For each right-hand side, this array contains information about
                    192: *>     various error bounds and condition numbers corresponding to the
                    193: *>     normwise relative error, which is defined as follows:
                    194: *>
                    195: *>     Normwise relative error in the ith solution vector:
                    196: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
                    197: *>            ------------------------------
                    198: *>                  max_j abs(X(j,i))
                    199: *>
                    200: *>     The array is indexed by the type of error information as described
                    201: *>     below. There currently are up to three pieces of information
                    202: *>     returned.
                    203: *>
                    204: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
                    205: *>     right-hand side.
                    206: *>
                    207: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
                    208: *>     three fields:
                    209: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    210: *>              reciprocal condition number is less than the threshold
                    211: *>              sqrt(n) * slamch('Epsilon').
                    212: *>
                    213: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    214: *>              almost certainly within a factor of 10 of the true error
                    215: *>              so long as the next entry is greater than the threshold
                    216: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
                    217: *>              be trusted if the previous boolean is true.
                    218: *>
                    219: *>     err = 3  Reciprocal condition number: Estimated normwise
                    220: *>              reciprocal condition number.  Compared with the threshold
                    221: *>              sqrt(n) * slamch('Epsilon') to determine if the error
                    222: *>              estimate is "guaranteed". These reciprocal condition
                    223: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    224: *>              appropriately scaled matrix Z.
                    225: *>              Let Z = S*A, where S scales each row by a power of the
                    226: *>              radix so all absolute row sums of Z are approximately 1.
                    227: *>
                    228: *>     This subroutine is only responsible for setting the second field
                    229: *>     above.
                    230: *>     See Lapack Working Note 165 for further details and extra
                    231: *>     cautions.
                    232: *> \endverbatim
                    233: *>
                    234: *> \param[in,out] ERR_BNDS_COMP
                    235: *> \verbatim
                    236: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension
                    237: *>                    (NRHS, N_ERR_BNDS)
                    238: *>     For each right-hand side, this array contains information about
                    239: *>     various error bounds and condition numbers corresponding to the
                    240: *>     componentwise relative error, which is defined as follows:
                    241: *>
                    242: *>     Componentwise relative error in the ith solution vector:
                    243: *>                    abs(XTRUE(j,i) - X(j,i))
                    244: *>             max_j ----------------------
                    245: *>                         abs(X(j,i))
                    246: *>
                    247: *>     The array is indexed by the right-hand side i (on which the
                    248: *>     componentwise relative error depends), and the type of error
                    249: *>     information as described below. There currently are up to three
                    250: *>     pieces of information returned for each right-hand side. If
                    251: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
                    252: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
                    253: *>     the first (:,N_ERR_BNDS) entries are returned.
                    254: *>
                    255: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
                    256: *>     right-hand side.
                    257: *>
                    258: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
                    259: *>     three fields:
                    260: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    261: *>              reciprocal condition number is less than the threshold
                    262: *>              sqrt(n) * slamch('Epsilon').
                    263: *>
                    264: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    265: *>              almost certainly within a factor of 10 of the true error
                    266: *>              so long as the next entry is greater than the threshold
                    267: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
                    268: *>              be trusted if the previous boolean is true.
                    269: *>
                    270: *>     err = 3  Reciprocal condition number: Estimated componentwise
                    271: *>              reciprocal condition number.  Compared with the threshold
                    272: *>              sqrt(n) * slamch('Epsilon') to determine if the error
                    273: *>              estimate is "guaranteed". These reciprocal condition
                    274: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    275: *>              appropriately scaled matrix Z.
                    276: *>              Let Z = S*(A*diag(x)), where x is the solution for the
                    277: *>              current right-hand side and S scales each row of
                    278: *>              A*diag(x) by a power of the radix so all absolute row
                    279: *>              sums of Z are approximately 1.
                    280: *>
                    281: *>     This subroutine is only responsible for setting the second field
                    282: *>     above.
                    283: *>     See Lapack Working Note 165 for further details and extra
                    284: *>     cautions.
                    285: *> \endverbatim
                    286: *>
                    287: *> \param[in] RES
                    288: *> \verbatim
                    289: *>          RES is COMPLEX*16 array, dimension (N)
                    290: *>     Workspace to hold the intermediate residual.
                    291: *> \endverbatim
                    292: *>
                    293: *> \param[in] AYB
                    294: *> \verbatim
                    295: *>          AYB is DOUBLE PRECISION array, dimension (N)
                    296: *>     Workspace.
                    297: *> \endverbatim
                    298: *>
                    299: *> \param[in] DY
                    300: *> \verbatim
                    301: *>          DY is COMPLEX*16 PRECISION array, dimension (N)
                    302: *>     Workspace to hold the intermediate solution.
                    303: *> \endverbatim
                    304: *>
                    305: *> \param[in] Y_TAIL
                    306: *> \verbatim
                    307: *>          Y_TAIL is COMPLEX*16 array, dimension (N)
                    308: *>     Workspace to hold the trailing bits of the intermediate solution.
                    309: *> \endverbatim
                    310: *>
                    311: *> \param[in] RCOND
                    312: *> \verbatim
                    313: *>          RCOND is DOUBLE PRECISION
                    314: *>     Reciprocal scaled condition number.  This is an estimate of the
                    315: *>     reciprocal Skeel condition number of the matrix A after
                    316: *>     equilibration (if done).  If this is less than the machine
                    317: *>     precision (in particular, if it is zero), the matrix is singular
                    318: *>     to working precision.  Note that the error may still be small even
                    319: *>     if this number is very small and the matrix appears ill-
                    320: *>     conditioned.
                    321: *> \endverbatim
                    322: *>
                    323: *> \param[in] ITHRESH
                    324: *> \verbatim
                    325: *>          ITHRESH is INTEGER
                    326: *>     The maximum number of residual computations allowed for
                    327: *>     refinement. The default is 10. For 'aggressive' set to 100 to
                    328: *>     permit convergence using approximate factorizations or
                    329: *>     factorizations other than LU. If the factorization uses a
                    330: *>     technique other than Gaussian elimination, the guarantees in
                    331: *>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
                    332: *> \endverbatim
                    333: *>
                    334: *> \param[in] RTHRESH
                    335: *> \verbatim
                    336: *>          RTHRESH is DOUBLE PRECISION
                    337: *>     Determines when to stop refinement if the error estimate stops
                    338: *>     decreasing. Refinement will stop when the next solution no longer
                    339: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
                    340: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
                    341: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
                    342: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
                    343: *>     for more details.
                    344: *> \endverbatim
                    345: *>
                    346: *> \param[in] DZ_UB
                    347: *> \verbatim
                    348: *>          DZ_UB is DOUBLE PRECISION
                    349: *>     Determines when to start considering componentwise convergence.
                    350: *>     Componentwise convergence is only considered after each component
                    351: *>     of the solution Y is stable, which we definte as the relative
                    352: *>     change in each component being less than DZ_UB. The default value
                    353: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
                    354: *>     more details.
                    355: *> \endverbatim
                    356: *>
                    357: *> \param[in] IGNORE_CWISE
                    358: *> \verbatim
                    359: *>          IGNORE_CWISE is LOGICAL
                    360: *>     If .TRUE. then ignore componentwise convergence. Default value
                    361: *>     is .FALSE..
                    362: *> \endverbatim
                    363: *>
                    364: *> \param[out] INFO
                    365: *> \verbatim
                    366: *>          INFO is INTEGER
                    367: *>       = 0:  Successful exit.
                    368: *>       < 0:  if INFO = -i, the ith argument to ZPOTRS had an illegal
                    369: *>             value
                    370: *> \endverbatim
                    371: *
                    372: *  Authors:
                    373: *  ========
                    374: *
                    375: *> \author Univ. of Tennessee 
                    376: *> \author Univ. of California Berkeley 
                    377: *> \author Univ. of Colorado Denver 
                    378: *> \author NAG Ltd. 
                    379: *
                    380: *> \date November 2011
                    381: *
                    382: *> \ingroup complex16POcomputational
                    383: *
                    384: *  =====================================================================
1.1       bertrand  385:       SUBROUTINE ZLA_PORFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
                    386:      $                                AF, LDAF, COLEQU, C, B, LDB, Y,
                    387:      $                                LDY, BERR_OUT, N_NORMS,
                    388:      $                                ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
                    389:      $                                AYB, DY, Y_TAIL, RCOND, ITHRESH,
                    390:      $                                RTHRESH, DZ_UB, IGNORE_CWISE,
                    391:      $                                INFO )
                    392: *
1.5       bertrand  393: *  -- LAPACK computational routine (version 3.4.0) --
                    394: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    395: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    396: *     November 2011
1.1       bertrand  397: *
                    398: *     .. Scalar Arguments ..
                    399:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
                    400:      $                   N_NORMS, ITHRESH
                    401:       CHARACTER          UPLO
                    402:       LOGICAL            COLEQU, IGNORE_CWISE
                    403:       DOUBLE PRECISION   RTHRESH, DZ_UB
                    404: *     ..
                    405: *     .. Array Arguments ..
                    406:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    407:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
                    408:       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
                    409:      $                   ERR_BNDS_NORM( NRHS, * ),
                    410:      $                   ERR_BNDS_COMP( NRHS, * )
                    411: *     ..
                    412: *
                    413: *  =====================================================================
                    414: *
                    415: *     .. Local Scalars ..
                    416:       INTEGER            UPLO2, CNT, I, J, X_STATE, Z_STATE,
                    417:      $                   Y_PREC_STATE
                    418:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
                    419:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
                    420:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
                    421:      $                   EPS, HUGEVAL, INCR_THRESH
                    422:       LOGICAL            INCR_PREC
                    423:       COMPLEX*16         ZDUM
                    424: *     ..
                    425: *     .. Parameters ..
                    426:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
                    427:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
                    428:      $                   EXTRA_Y
                    429:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
                    430:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
                    431:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
                    432:      $                   EXTRA_Y = 2 )
                    433:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
                    434:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
                    435:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
                    436:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
                    437:      $                   BERR_I = 3 )
                    438:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
                    439:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
                    440:      $                   PIV_GROWTH_I = 9 )
                    441:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    442:      $                   LA_LINRX_CWISE_I
                    443:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    444:      $                   LA_LINRX_ITHRESH_I = 2 )
                    445:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    446:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    447:      $                   LA_LINRX_RCOND_I
                    448:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    449:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    450: *     ..
                    451: *     .. External Functions ..
                    452:       LOGICAL            LSAME
                    453:       EXTERNAL           ILAUPLO
                    454:       INTEGER            ILAUPLO
                    455: *     ..
                    456: *     .. External Subroutines ..
                    457:       EXTERNAL           ZAXPY, ZCOPY, ZPOTRS, ZHEMV, BLAS_ZHEMV_X,
                    458:      $                   BLAS_ZHEMV2_X, ZLA_HEAMV, ZLA_WWADDW,
                    459:      $                   ZLA_LIN_BERR, DLAMCH
                    460:       DOUBLE PRECISION   DLAMCH
                    461: *     ..
                    462: *     .. Intrinsic Functions ..
                    463:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
                    464: *     ..
                    465: *     .. Statement Functions ..
                    466:       DOUBLE PRECISION   CABS1
                    467: *     ..
                    468: *     .. Statement Function Definitions ..
                    469:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    470: *     ..
                    471: *     .. Executable Statements ..
                    472: *
                    473:       IF (INFO.NE.0) RETURN
                    474:       EPS = DLAMCH( 'Epsilon' )
                    475:       HUGEVAL = DLAMCH( 'Overflow' )
                    476: *     Force HUGEVAL to Inf
                    477:       HUGEVAL = HUGEVAL * HUGEVAL
                    478: *     Using HUGEVAL may lead to spurious underflows.
                    479:       INCR_THRESH = DBLE(N) * EPS
                    480: 
                    481:       IF (LSAME (UPLO, 'L')) THEN
                    482:          UPLO2 = ILAUPLO( 'L' )
                    483:       ELSE
                    484:          UPLO2 = ILAUPLO( 'U' )
                    485:       ENDIF
                    486: 
                    487:       DO J = 1, NRHS
                    488:          Y_PREC_STATE = EXTRA_RESIDUAL
                    489:          IF (Y_PREC_STATE .EQ. EXTRA_Y) THEN
                    490:             DO I = 1, N
                    491:                Y_TAIL( I ) = 0.0D+0
                    492:             END DO
                    493:          END IF
                    494: 
                    495:          DXRAT = 0.0D+0
                    496:          DXRATMAX = 0.0D+0
                    497:          DZRAT = 0.0D+0
                    498:          DZRATMAX = 0.0D+0
                    499:          FINAL_DX_X = HUGEVAL
                    500:          FINAL_DZ_Z = HUGEVAL
                    501:          PREVNORMDX = HUGEVAL
                    502:          PREV_DZ_Z = HUGEVAL
                    503:          DZ_Z = HUGEVAL
                    504:          DX_X = HUGEVAL
                    505: 
                    506:          X_STATE = WORKING_STATE
                    507:          Z_STATE = UNSTABLE_STATE
                    508:          INCR_PREC = .FALSE.
                    509: 
                    510:          DO CNT = 1, ITHRESH
                    511: *
                    512: *         Compute residual RES = B_s - op(A_s) * Y,
                    513: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
                    514: *
                    515:             CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
                    516:             IF (Y_PREC_STATE .EQ. BASE_RESIDUAL) THEN
                    517:                CALL ZHEMV(UPLO, N, DCMPLX(-1.0D+0), A, LDA, Y(1,J), 1,
                    518:      $              DCMPLX(1.0D+0), RES, 1)
                    519:             ELSE IF (Y_PREC_STATE .EQ. EXTRA_RESIDUAL) THEN
                    520:                CALL BLAS_ZHEMV_X(UPLO2, N, DCMPLX(-1.0D+0), A, LDA,
                    521:      $              Y( 1, J ), 1, DCMPLX(1.0D+0), RES, 1, PREC_TYPE)
                    522:             ELSE
                    523:                CALL BLAS_ZHEMV2_X(UPLO2, N, DCMPLX(-1.0D+0), A, LDA,
                    524:      $              Y(1, J), Y_TAIL, 1, DCMPLX(1.0D+0), RES, 1,
                    525:      $     PREC_TYPE)
                    526:             END IF
                    527: 
                    528: !         XXX: RES is no longer needed.
                    529:             CALL ZCOPY( N, RES, 1, DY, 1 )
                    530:             CALL ZPOTRS( UPLO, N, 1, AF, LDAF, DY, N, INFO)
                    531: *
                    532: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
                    533: *
                    534:             NORMX = 0.0D+0
                    535:             NORMY = 0.0D+0
                    536:             NORMDX = 0.0D+0
                    537:             DZ_Z = 0.0D+0
                    538:             YMIN = HUGEVAL
                    539: 
                    540:             DO I = 1, N
                    541:                YK = CABS1(Y(I, J))
                    542:                DYK = CABS1(DY(I))
                    543: 
                    544:                IF (YK .NE. 0.0D+0) THEN
                    545:                   DZ_Z = MAX( DZ_Z, DYK / YK )
                    546:                ELSE IF (DYK .NE. 0.0D+0) THEN
                    547:                   DZ_Z = HUGEVAL
                    548:                END IF
                    549: 
                    550:                YMIN = MIN( YMIN, YK )
                    551: 
                    552:                NORMY = MAX( NORMY, YK )
                    553: 
                    554:                IF ( COLEQU ) THEN
                    555:                   NORMX = MAX(NORMX, YK * C(I))
                    556:                   NORMDX = MAX(NORMDX, DYK * C(I))
                    557:                ELSE
                    558:                   NORMX = NORMY
                    559:                   NORMDX = MAX(NORMDX, DYK)
                    560:                END IF
                    561:             END DO
                    562: 
                    563:             IF (NORMX .NE. 0.0D+0) THEN
                    564:                DX_X = NORMDX / NORMX
                    565:             ELSE IF (NORMDX .EQ. 0.0D+0) THEN
                    566:                DX_X = 0.0D+0
                    567:             ELSE
                    568:                DX_X = HUGEVAL
                    569:             END IF
                    570: 
                    571:             DXRAT = NORMDX / PREVNORMDX
                    572:             DZRAT = DZ_Z / PREV_DZ_Z
                    573: *
                    574: *         Check termination criteria.
                    575: *
                    576:             IF (YMIN*RCOND .LT. INCR_THRESH*NORMY
                    577:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y)
                    578:      $           INCR_PREC = .TRUE.
                    579: 
                    580:             IF (X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH)
                    581:      $           X_STATE = WORKING_STATE
                    582:             IF (X_STATE .EQ. WORKING_STATE) THEN
                    583:                IF (DX_X .LE. EPS) THEN
                    584:                   X_STATE = CONV_STATE
                    585:                ELSE IF (DXRAT .GT. RTHRESH) THEN
                    586:                   IF (Y_PREC_STATE .NE. EXTRA_Y) THEN
                    587:                      INCR_PREC = .TRUE.
                    588:                   ELSE
                    589:                      X_STATE = NOPROG_STATE
                    590:                   END IF
                    591:                ELSE
                    592:                   IF (DXRAT .GT. DXRATMAX) DXRATMAX = DXRAT
                    593:                END IF
                    594:                IF (X_STATE .GT. WORKING_STATE) FINAL_DX_X = DX_X
                    595:             END IF
                    596: 
                    597:             IF (Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB)
                    598:      $           Z_STATE = WORKING_STATE
                    599:             IF (Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH)
                    600:      $           Z_STATE = WORKING_STATE
                    601:             IF (Z_STATE .EQ. WORKING_STATE) THEN
                    602:                IF (DZ_Z .LE. EPS) THEN
                    603:                   Z_STATE = CONV_STATE
                    604:                ELSE IF (DZ_Z .GT. DZ_UB) THEN
                    605:                   Z_STATE = UNSTABLE_STATE
                    606:                   DZRATMAX = 0.0D+0
                    607:                   FINAL_DZ_Z = HUGEVAL
                    608:                ELSE IF (DZRAT .GT. RTHRESH) THEN
                    609:                   IF (Y_PREC_STATE .NE. EXTRA_Y) THEN
                    610:                      INCR_PREC = .TRUE.
                    611:                   ELSE
                    612:                      Z_STATE = NOPROG_STATE
                    613:                   END IF
                    614:                ELSE
                    615:                   IF (DZRAT .GT. DZRATMAX) DZRATMAX = DZRAT
                    616:                END IF
                    617:                IF (Z_STATE .GT. WORKING_STATE) FINAL_DZ_Z = DZ_Z
                    618:             END IF
                    619: 
                    620:             IF ( X_STATE.NE.WORKING_STATE.AND.
                    621:      $           (IGNORE_CWISE.OR.Z_STATE.NE.WORKING_STATE) )
                    622:      $           GOTO 666
                    623: 
                    624:             IF (INCR_PREC) THEN
                    625:                INCR_PREC = .FALSE.
                    626:                Y_PREC_STATE = Y_PREC_STATE + 1
                    627:                DO I = 1, N
                    628:                   Y_TAIL( I ) = 0.0D+0
                    629:                END DO
                    630:             END IF
                    631: 
                    632:             PREVNORMDX = NORMDX
                    633:             PREV_DZ_Z = DZ_Z
                    634: *
                    635: *           Update soluton.
                    636: *
                    637:             IF (Y_PREC_STATE .LT. EXTRA_Y) THEN
                    638:                CALL ZAXPY( N, DCMPLX(1.0D+0), DY, 1, Y(1,J), 1 )
                    639:             ELSE
                    640:                CALL ZLA_WWADDW(N, Y(1,J), Y_TAIL, DY)
                    641:             END IF
                    642: 
                    643:          END DO
                    644: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
                    645:  666     CONTINUE
                    646: *
                    647: *     Set final_* when cnt hits ithresh.
                    648: *
                    649:          IF (X_STATE .EQ. WORKING_STATE) FINAL_DX_X = DX_X
                    650:          IF (Z_STATE .EQ. WORKING_STATE) FINAL_DZ_Z = DZ_Z
                    651: *
                    652: *     Compute error bounds.
                    653: *
                    654:          IF (N_NORMS .GE. 1) THEN
                    655:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
                    656:      $           FINAL_DX_X / (1 - DXRATMAX)
                    657:          END IF
                    658:          IF (N_NORMS .GE. 2) THEN
                    659:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
                    660:      $           FINAL_DZ_Z / (1 - DZRATMAX)
                    661:          END IF
                    662: *
                    663: *     Compute componentwise relative backward error from formula
                    664: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    665: *     where abs(Z) is the componentwise absolute value of the matrix
                    666: *     or vector Z.
                    667: *
                    668: *        Compute residual RES = B_s - op(A_s) * Y,
                    669: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
                    670: *
                    671:          CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
                    672:          CALL ZHEMV(UPLO, N, DCMPLX(-1.0D+0), A, LDA, Y(1,J), 1,
                    673:      $        DCMPLX(1.0D+0), RES, 1)
                    674: 
                    675:          DO I = 1, N
                    676:             AYB( I ) = CABS1( B( I, J ) )
                    677:          END DO
                    678: *
                    679: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
                    680: *
                    681:          CALL ZLA_HEAMV (UPLO2, N, 1.0D+0,
                    682:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1)
                    683: 
                    684:          CALL ZLA_LIN_BERR (N, N, 1, RES, AYB, BERR_OUT(J))
                    685: *
                    686: *     End of loop for each RHS.
                    687: *
                    688:       END DO
                    689: *
                    690:       RETURN
                    691:       END

CVSweb interface <joel.bertrand@systella.fr>