File:  [local] / rpl / lapack / lapack / zla_porcond_x.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 14:22:49 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_16, rpl-4_1_15, rpl-4_1_14, rpl-4_1_13, rpl-4_1_12, rpl-4_1_11, HEAD
Mise à jour de lapack.

    1: *> \brief \b ZLA_PORCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian positive-definite matrices.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLA_PORCOND_X + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_porcond_x.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_porcond_x.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_porcond_x.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION ZLA_PORCOND_X( UPLO, N, A, LDA, AF,
   22: *                                                LDAF, X, INFO, WORK,
   23: *                                                RWORK )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          UPLO
   27: *       INTEGER            N, LDA, LDAF, INFO
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
   31: *       DOUBLE PRECISION   RWORK( * )
   32: *       ..
   33: *  
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *>    ZLA_PORCOND_X Computes the infinity norm condition number of
   41: *>    op(A) * diag(X) where X is a COMPLEX*16 vector.
   42: *> \endverbatim
   43: *
   44: *  Arguments:
   45: *  ==========
   46: *
   47: *> \param[in] UPLO
   48: *> \verbatim
   49: *>          UPLO is CHARACTER*1
   50: *>       = 'U':  Upper triangle of A is stored;
   51: *>       = 'L':  Lower triangle of A is stored.
   52: *> \endverbatim
   53: *>
   54: *> \param[in] N
   55: *> \verbatim
   56: *>          N is INTEGER
   57: *>     The number of linear equations, i.e., the order of the
   58: *>     matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] A
   62: *> \verbatim
   63: *>          A is COMPLEX*16 array, dimension (LDA,N)
   64: *>     On entry, the N-by-N matrix A.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] LDA
   68: *> \verbatim
   69: *>          LDA is INTEGER
   70: *>     The leading dimension of the array A.  LDA >= max(1,N).
   71: *> \endverbatim
   72: *>
   73: *> \param[in] AF
   74: *> \verbatim
   75: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
   76: *>     The triangular factor U or L from the Cholesky factorization
   77: *>     A = U**H*U or A = L*L**H, as computed by ZPOTRF.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] LDAF
   81: *> \verbatim
   82: *>          LDAF is INTEGER
   83: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
   84: *> \endverbatim
   85: *>
   86: *> \param[in] X
   87: *> \verbatim
   88: *>          X is COMPLEX*16 array, dimension (N)
   89: *>     The vector X in the formula op(A) * diag(X).
   90: *> \endverbatim
   91: *>
   92: *> \param[out] INFO
   93: *> \verbatim
   94: *>          INFO is INTEGER
   95: *>       = 0:  Successful exit.
   96: *>     i > 0:  The ith argument is invalid.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] WORK
  100: *> \verbatim
  101: *>          WORK is COMPLEX*16 array, dimension (2*N).
  102: *>     Workspace.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] RWORK
  106: *> \verbatim
  107: *>          RWORK is DOUBLE PRECISION array, dimension (N).
  108: *>     Workspace.
  109: *> \endverbatim
  110: *
  111: *  Authors:
  112: *  ========
  113: *
  114: *> \author Univ. of Tennessee 
  115: *> \author Univ. of California Berkeley 
  116: *> \author Univ. of Colorado Denver 
  117: *> \author NAG Ltd. 
  118: *
  119: *> \date September 2012
  120: *
  121: *> \ingroup complex16POcomputational
  122: *
  123: *  =====================================================================
  124:       DOUBLE PRECISION FUNCTION ZLA_PORCOND_X( UPLO, N, A, LDA, AF,
  125:      $                                         LDAF, X, INFO, WORK,
  126:      $                                         RWORK )
  127: *
  128: *  -- LAPACK computational routine (version 3.4.2) --
  129: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  130: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  131: *     September 2012
  132: *
  133: *     .. Scalar Arguments ..
  134:       CHARACTER          UPLO
  135:       INTEGER            N, LDA, LDAF, INFO
  136: *     ..
  137: *     .. Array Arguments ..
  138:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
  139:       DOUBLE PRECISION   RWORK( * )
  140: *     ..
  141: *
  142: *  =====================================================================
  143: *
  144: *     .. Local Scalars ..
  145:       INTEGER            KASE, I, J
  146:       DOUBLE PRECISION   AINVNM, ANORM, TMP
  147:       LOGICAL            UP, UPPER
  148:       COMPLEX*16         ZDUM
  149: *     ..
  150: *     .. Local Arrays ..
  151:       INTEGER            ISAVE( 3 )
  152: *     ..
  153: *     .. External Functions ..
  154:       LOGICAL            LSAME
  155:       EXTERNAL           LSAME
  156: *     ..
  157: *     .. External Subroutines ..
  158:       EXTERNAL           ZLACN2, ZPOTRS, XERBLA
  159: *     ..
  160: *     .. Intrinsic Functions ..
  161:       INTRINSIC          ABS, MAX, REAL, DIMAG
  162: *     ..
  163: *     .. Statement Functions ..
  164:       DOUBLE PRECISION CABS1
  165: *     ..
  166: *     .. Statement Function Definitions ..
  167:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  168: *     ..
  169: *     .. Executable Statements ..
  170: *
  171:       ZLA_PORCOND_X = 0.0D+0
  172: *
  173:       INFO = 0
  174:       UPPER = LSAME( UPLO, 'U' )
  175:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  176:          INFO = -1
  177:       ELSE IF ( N.LT.0 ) THEN
  178:          INFO = -2
  179:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  180:          INFO = -4
  181:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  182:          INFO = -6
  183:       END IF
  184:       IF( INFO.NE.0 ) THEN
  185:          CALL XERBLA( 'ZLA_PORCOND_X', -INFO )
  186:          RETURN
  187:       END IF
  188:       UP = .FALSE.
  189:       IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
  190: *
  191: *     Compute norm of op(A)*op2(C).
  192: *
  193:       ANORM = 0.0D+0
  194:       IF ( UP ) THEN
  195:          DO I = 1, N
  196:             TMP = 0.0D+0
  197:             DO J = 1, I
  198:                TMP = TMP + CABS1( A( J, I ) * X( J ) )
  199:             END DO
  200:             DO J = I+1, N
  201:                TMP = TMP + CABS1( A( I, J ) * X( J ) )
  202:             END DO
  203:             RWORK( I ) = TMP
  204:             ANORM = MAX( ANORM, TMP )
  205:          END DO
  206:       ELSE
  207:          DO I = 1, N
  208:             TMP = 0.0D+0
  209:             DO J = 1, I
  210:                TMP = TMP + CABS1( A( I, J ) * X( J ) )
  211:             END DO
  212:             DO J = I+1, N
  213:                TMP = TMP + CABS1( A( J, I ) * X( J ) )
  214:             END DO
  215:             RWORK( I ) = TMP
  216:             ANORM = MAX( ANORM, TMP )
  217:          END DO
  218:       END IF
  219: *
  220: *     Quick return if possible.
  221: *
  222:       IF( N.EQ.0 ) THEN
  223:          ZLA_PORCOND_X = 1.0D+0
  224:          RETURN
  225:       ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
  226:          RETURN
  227:       END IF
  228: *
  229: *     Estimate the norm of inv(op(A)).
  230: *
  231:       AINVNM = 0.0D+0
  232: *
  233:       KASE = 0
  234:    10 CONTINUE
  235:       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  236:       IF( KASE.NE.0 ) THEN
  237:          IF( KASE.EQ.2 ) THEN
  238: *
  239: *           Multiply by R.
  240: *
  241:             DO I = 1, N
  242:                WORK( I ) = WORK( I ) * RWORK( I )
  243:             END DO
  244: *
  245:             IF ( UP ) THEN
  246:                CALL ZPOTRS( 'U', N, 1, AF, LDAF,
  247:      $            WORK, N, INFO )
  248:             ELSE
  249:                CALL ZPOTRS( 'L', N, 1, AF, LDAF,
  250:      $            WORK, N, INFO )
  251:             ENDIF
  252: *
  253: *           Multiply by inv(X).
  254: *
  255:             DO I = 1, N
  256:                WORK( I ) = WORK( I ) / X( I )
  257:             END DO
  258:          ELSE
  259: *
  260: *           Multiply by inv(X**H).
  261: *
  262:             DO I = 1, N
  263:                WORK( I ) = WORK( I ) / X( I )
  264:             END DO
  265: *
  266:             IF ( UP ) THEN
  267:                CALL ZPOTRS( 'U', N, 1, AF, LDAF,
  268:      $            WORK, N, INFO )
  269:             ELSE
  270:                CALL ZPOTRS( 'L', N, 1, AF, LDAF,
  271:      $            WORK, N, INFO )
  272:             END IF
  273: *
  274: *           Multiply by R.
  275: *
  276:             DO I = 1, N
  277:                WORK( I ) = WORK( I ) * RWORK( I )
  278:             END DO
  279:          END IF
  280:          GO TO 10
  281:       END IF
  282: *
  283: *     Compute the estimate of the reciprocal condition number.
  284: *
  285:       IF( AINVNM .NE. 0.0D+0 )
  286:      $   ZLA_PORCOND_X = 1.0D+0 / AINVNM
  287: *
  288:       RETURN
  289: *
  290:       END

CVSweb interface <joel.bertrand@systella.fr>