File:  [local] / rpl / lapack / lapack / zla_porcond_c.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:48 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       DOUBLE PRECISION FUNCTION ZLA_PORCOND_C( UPLO, N, A, LDA, AF, 
    2:      $                                         LDAF, C, CAPPLY, INFO,
    3:      $                                         WORK, RWORK )
    4: *
    5: *     -- LAPACK routine (version 3.2.1)                                 --
    6: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    7: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    8: *     -- April 2009                                                   --
    9: *
   10: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   11: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   12: *
   13:       IMPLICIT NONE
   14: *     ..
   15: *     .. Scalar Arguments ..
   16:       CHARACTER          UPLO
   17:       LOGICAL            CAPPLY
   18:       INTEGER            N, LDA, LDAF, INFO
   19: *     ..
   20: *     .. Array Arguments ..
   21:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * )
   22:       DOUBLE PRECISION   C( * ), RWORK( * )
   23: *     ..
   24: *
   25: *  Purpose
   26: *  =======
   27: *
   28: *     ZLA_PORCOND_C Computes the infinity norm condition number of
   29: *     op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector
   30: *
   31: *  Arguments
   32: *  =========
   33: *
   34: *     UPLO    (input) CHARACTER*1
   35: *       = 'U':  Upper triangle of A is stored;
   36: *       = 'L':  Lower triangle of A is stored.
   37: *
   38: *     N       (input) INTEGER
   39: *     The number of linear equations, i.e., the order of the
   40: *     matrix A.  N >= 0.
   41: *
   42: *     A       (input) COMPLEX*16 array, dimension (LDA,N)
   43: *     On entry, the N-by-N matrix A
   44: *
   45: *     LDA     (input) INTEGER
   46: *     The leading dimension of the array A.  LDA >= max(1,N).
   47: *
   48: *     AF      (input) COMPLEX*16 array, dimension (LDAF,N)
   49: *     The triangular factor U or L from the Cholesky factorization
   50: *     A = U**T*U or A = L*L**T, as computed by ZPOTRF.
   51: *
   52: *     LDAF    (input) INTEGER
   53: *     The leading dimension of the array AF.  LDAF >= max(1,N).
   54: *
   55: *     C       (input) DOUBLE PRECISION array, dimension (N)
   56: *     The vector C in the formula op(A) * inv(diag(C)).
   57: *
   58: *     CAPPLY  (input) LOGICAL
   59: *     If .TRUE. then access the vector C in the formula above.
   60: *
   61: *     INFO    (output) INTEGER
   62: *       = 0:  Successful exit.
   63: *     i > 0:  The ith argument is invalid.
   64: *
   65: *     WORK    (input) COMPLEX*16 array, dimension (2*N).
   66: *     Workspace.
   67: *
   68: *     RWORK   (input) DOUBLE PRECISION array, dimension (N).
   69: *     Workspace.
   70: *
   71: *  =====================================================================
   72: *
   73: *     .. Local Scalars ..
   74:       INTEGER            KASE
   75:       DOUBLE PRECISION   AINVNM, ANORM, TMP
   76:       INTEGER            I, J
   77:       LOGICAL            UP
   78:       COMPLEX*16         ZDUM
   79: *     ..
   80: *     .. Local Arrays ..
   81:       INTEGER            ISAVE( 3 )
   82: *     ..
   83: *     .. External Functions ..
   84:       LOGICAL            LSAME
   85:       EXTERNAL           LSAME
   86: *     ..
   87: *     .. External Subroutines ..
   88:       EXTERNAL           ZLACN2, ZPOTRS, XERBLA
   89: *     ..
   90: *     .. Intrinsic Functions ..
   91:       INTRINSIC          ABS, MAX, REAL, DIMAG
   92: *     ..
   93: *     .. Statement Functions ..
   94:       DOUBLE PRECISION CABS1
   95: *     ..
   96: *     .. Statement Function Definitions ..
   97:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
   98: *     ..
   99: *     .. Executable Statements ..
  100: *
  101:       ZLA_PORCOND_C = 0.0D+0
  102: *
  103:       INFO = 0
  104:       IF( N.LT.0 ) THEN
  105:          INFO = -2
  106:       END IF
  107:       IF( INFO.NE.0 ) THEN
  108:          CALL XERBLA( 'ZLA_PORCOND_C', -INFO )
  109:          RETURN
  110:       END IF
  111:       UP = .FALSE.
  112:       IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
  113: *
  114: *     Compute norm of op(A)*op2(C).
  115: *
  116:       ANORM = 0.0D+0
  117:       IF ( UP ) THEN
  118:          DO I = 1, N
  119:             TMP = 0.0D+0
  120:             IF ( CAPPLY ) THEN
  121:                DO J = 1, I
  122:                   TMP = TMP + CABS1( A( J, I ) ) / C( J )
  123:                END DO
  124:                DO J = I+1, N
  125:                   TMP = TMP + CABS1( A( I, J ) ) / C( J )
  126:                END DO
  127:             ELSE
  128:                DO J = 1, I
  129:                   TMP = TMP + CABS1( A( J, I ) )
  130:                END DO
  131:                DO J = I+1, N
  132:                   TMP = TMP + CABS1( A( I, J ) )
  133:                END DO
  134:             END IF
  135:             RWORK( I ) = TMP
  136:             ANORM = MAX( ANORM, TMP )
  137:          END DO
  138:       ELSE
  139:          DO I = 1, N
  140:             TMP = 0.0D+0
  141:             IF ( CAPPLY ) THEN
  142:                DO J = 1, I
  143:                   TMP = TMP + CABS1( A( I, J ) ) / C( J )
  144:                END DO
  145:                DO J = I+1, N
  146:                   TMP = TMP + CABS1( A( J, I ) ) / C( J )
  147:                END DO
  148:             ELSE
  149:                DO J = 1, I
  150:                   TMP = TMP + CABS1( A( I, J ) )
  151:                END DO
  152:                DO J = I+1, N
  153:                   TMP = TMP + CABS1( A( J, I ) )
  154:                END DO
  155:             END IF
  156:             RWORK( I ) = TMP
  157:             ANORM = MAX( ANORM, TMP )
  158:          END DO
  159:       END IF
  160: *
  161: *     Quick return if possible.
  162: *
  163:       IF( N.EQ.0 ) THEN
  164:          ZLA_PORCOND_C = 1.0D+0
  165:          RETURN
  166:       ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
  167:          RETURN
  168:       END IF
  169: *
  170: *     Estimate the norm of inv(op(A)).
  171: *
  172:       AINVNM = 0.0D+0
  173: *
  174:       KASE = 0
  175:    10 CONTINUE
  176:       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  177:       IF( KASE.NE.0 ) THEN
  178:          IF( KASE.EQ.2 ) THEN
  179: *
  180: *           Multiply by R.
  181: *
  182:             DO I = 1, N
  183:                WORK( I ) = WORK( I ) * RWORK( I )
  184:             END DO
  185: *
  186:             IF ( UP ) THEN
  187:                CALL ZPOTRS( 'U', N, 1, AF, LDAF,
  188:      $            WORK, N, INFO )
  189:             ELSE
  190:                CALL ZPOTRS( 'L', N, 1, AF, LDAF,
  191:      $            WORK, N, INFO )
  192:             ENDIF
  193: *
  194: *           Multiply by inv(C).
  195: *
  196:             IF ( CAPPLY ) THEN
  197:                DO I = 1, N
  198:                   WORK( I ) = WORK( I ) * C( I )
  199:                END DO
  200:             END IF
  201:          ELSE
  202: *
  203: *           Multiply by inv(C').
  204: *
  205:             IF ( CAPPLY ) THEN
  206:                DO I = 1, N
  207:                   WORK( I ) = WORK( I ) * C( I )
  208:                END DO
  209:             END IF
  210: *
  211:             IF ( UP ) THEN
  212:                CALL ZPOTRS( 'U', N, 1, AF, LDAF,
  213:      $            WORK, N, INFO )
  214:             ELSE
  215:                CALL ZPOTRS( 'L', N, 1, AF, LDAF,
  216:      $            WORK, N, INFO )
  217:             END IF
  218: *
  219: *           Multiply by R.
  220: *
  221:             DO I = 1, N
  222:                WORK( I ) = WORK( I ) * RWORK( I )
  223:             END DO
  224:          END IF
  225:          GO TO 10
  226:       END IF
  227: *
  228: *     Compute the estimate of the reciprocal condition number.
  229: *
  230:       IF( AINVNM .NE. 0.0D+0 )
  231:      $   ZLA_PORCOND_C = 1.0D+0 / AINVNM
  232: *
  233:       RETURN
  234: *
  235:       END

CVSweb interface <joel.bertrand@systella.fr>