Annotation of rpl/lapack/lapack/zla_lin_berr.f, revision 1.11

1.8       bertrand    1: *> \brief \b ZLA_LIN_BERR computes a component-wise relative backward error.
1.5       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZLA_LIN_BERR + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_lin_berr.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_lin_berr.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_lin_berr.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLA_LIN_BERR ( N, NZ, NRHS, RES, AYB, BERR )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       INTEGER            N, NZ, NRHS
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION   AYB( N, NRHS ), BERR( NRHS )
                     28: *       COMPLEX*16         RES( N, NRHS )
                     29: *       ..
                     30: *  
                     31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *>    ZLA_LIN_BERR computes componentwise relative backward error from
                     38: *>    the formula
                     39: *>        max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                     40: *>    where abs(Z) is the componentwise absolute value of the matrix
                     41: *>    or vector Z.
                     42: *> \endverbatim
                     43: *
                     44: *  Arguments:
                     45: *  ==========
                     46: *
                     47: *> \param[in] N
                     48: *> \verbatim
                     49: *>          N is INTEGER
                     50: *>     The number of linear equations, i.e., the order of the
                     51: *>     matrix A.  N >= 0.
                     52: *> \endverbatim
                     53: *>
                     54: *> \param[in] NZ
                     55: *> \verbatim
                     56: *>          NZ is INTEGER
                     57: *>     We add (NZ+1)*SLAMCH( 'Safe minimum' ) to R(i) in the numerator to
                     58: *>     guard against spuriously zero residuals. Default value is N.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] NRHS
                     62: *> \verbatim
                     63: *>          NRHS is INTEGER
                     64: *>     The number of right hand sides, i.e., the number of columns
                     65: *>     of the matrices AYB, RES, and BERR.  NRHS >= 0.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] RES
                     69: *> \verbatim
1.11    ! bertrand   70: *>          RES is COMPLEX*16 array, dimension (N,NRHS)
1.5       bertrand   71: *>     The residual matrix, i.e., the matrix R in the relative backward
                     72: *>     error formula above.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] AYB
                     76: *> \verbatim
                     77: *>          AYB is DOUBLE PRECISION array, dimension (N, NRHS)
                     78: *>     The denominator in the relative backward error formula above, i.e.,
                     79: *>     the matrix abs(op(A_s))*abs(Y) + abs(B_s). The matrices A, Y, and B
                     80: *>     are from iterative refinement (see zla_gerfsx_extended.f).
                     81: *> \endverbatim
                     82: *>     
                     83: *> \param[out] BERR
                     84: *> \verbatim
1.11    ! bertrand   85: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
1.5       bertrand   86: *>     The componentwise relative backward error from the formula above.
                     87: *> \endverbatim
                     88: *
                     89: *  Authors:
                     90: *  ========
                     91: *
                     92: *> \author Univ. of Tennessee 
                     93: *> \author Univ. of California Berkeley 
                     94: *> \author Univ. of Colorado Denver 
                     95: *> \author NAG Ltd. 
                     96: *
1.11    ! bertrand   97: *> \date June 2016
1.5       bertrand   98: *
                     99: *> \ingroup complex16OTHERcomputational
                    100: *
                    101: *  =====================================================================
1.1       bertrand  102:       SUBROUTINE ZLA_LIN_BERR ( N, NZ, NRHS, RES, AYB, BERR )
                    103: *
1.11    ! bertrand  104: *  -- LAPACK computational routine (version 3.6.1) --
1.5       bertrand  105: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    106: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.11    ! bertrand  107: *     June 2016
1.1       bertrand  108: *
                    109: *     .. Scalar Arguments ..
                    110:       INTEGER            N, NZ, NRHS
                    111: *     ..
                    112: *     .. Array Arguments ..
                    113:       DOUBLE PRECISION   AYB( N, NRHS ), BERR( NRHS )
                    114:       COMPLEX*16         RES( N, NRHS )
                    115: *     ..
                    116: *
                    117: *  =====================================================================
                    118: *
                    119: *     .. Local Scalars ..
                    120:       DOUBLE PRECISION   TMP
                    121:       INTEGER            I, J
                    122:       COMPLEX*16         CDUM
                    123: *     ..
                    124: *     .. Intrinsic Functions ..
                    125:       INTRINSIC          ABS, REAL, DIMAG, MAX
                    126: *     ..
                    127: *     .. External Functions ..
                    128:       EXTERNAL           DLAMCH
                    129:       DOUBLE PRECISION   DLAMCH
                    130:       DOUBLE PRECISION   SAFE1
                    131: *     ..
                    132: *     .. Statement Functions ..
                    133:       COMPLEX*16         CABS1
                    134: *     ..
                    135: *     .. Statement Function Definitions ..
                    136:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
                    137: *     ..
                    138: *     .. Executable Statements ..
                    139: *
                    140: *     Adding SAFE1 to the numerator guards against spuriously zero
                    141: *     residuals.  A similar safeguard is in the CLA_yyAMV routine used
                    142: *     to compute AYB.
                    143: *
                    144:       SAFE1 = DLAMCH( 'Safe minimum' )
                    145:       SAFE1 = (NZ+1)*SAFE1
                    146: 
                    147:       DO J = 1, NRHS
                    148:          BERR(J) = 0.0D+0
                    149:          DO I = 1, N
                    150:             IF (AYB(I,J) .NE. 0.0D+0) THEN
                    151:                TMP = (SAFE1 + CABS1(RES(I,J)))/AYB(I,J)
                    152:                BERR(J) = MAX( BERR(J), TMP )
                    153:             END IF
                    154: *
                    155: *     If AYB is exactly 0.0 (and if computed by CLA_yyAMV), then we know
                    156: *     the true residual also must be exactly 0.0.
                    157: *
                    158:          END DO
                    159:       END DO
                    160:       END

CVSweb interface <joel.bertrand@systella.fr>