File:  [local] / rpl / lapack / lapack / zla_herpvgrw.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:04:07 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       DOUBLE PRECISION FUNCTION ZLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF,
    2:      $                                        LDAF, IPIV, WORK )
    3: *
    4: *     -- LAPACK routine (version 3.2.2)                                 --
    5: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    6: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    7: *     -- June 2010                                                    --
    8: *
    9: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   10: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   11: *
   12:       IMPLICIT NONE
   13: *     ..
   14: *     .. Scalar Arguments ..
   15:       CHARACTER*1        UPLO
   16:       INTEGER            N, INFO, LDA, LDAF
   17: *     ..
   18: *     .. Array Arguments ..
   19:       INTEGER            IPIV( * )
   20:       COMPLEX*16         A( LDA, * ), AF( LDAF, * )
   21:       DOUBLE PRECISION   WORK( * )
   22: *     ..
   23: *
   24: *  Purpose
   25: *  =======
   26:    27: *  ZLA_HERPVGRW computes the reciprocal pivot growth factor
   28: *  norm(A)/norm(U). The "max absolute element" norm is used. If this is
   29: *  much less than 1, the stability of the LU factorization of the
   30: *  (equilibrated) matrix A could be poor. This also means that the
   31: *  solution X, estimated condition numbers, and error bounds could be
   32: *  unreliable.
   33: *
   34: *  Arguments
   35: *  =========
   36: *
   37: *     UPLO    (input) CHARACTER*1
   38: *       = 'U':  Upper triangle of A is stored;
   39: *       = 'L':  Lower triangle of A is stored.
   40: *
   41: *     N       (input) INTEGER
   42: *     The number of linear equations, i.e., the order of the
   43: *     matrix A.  N >= 0.
   44: *
   45: *     INFO    (input) INTEGER
   46: *     The value of INFO returned from ZHETRF, .i.e., the pivot in
   47: *     column INFO is exactly 0.
   48: *
   49: *     NCOLS   (input) INTEGER
   50: *     The number of columns of the matrix A. NCOLS >= 0.
   51: *
   52: *     A       (input) COMPLEX*16 array, dimension (LDA,N)
   53: *     On entry, the N-by-N matrix A.
   54: *
   55: *     LDA     (input) INTEGER
   56: *     The leading dimension of the array A.  LDA >= max(1,N).
   57: *
   58: *     AF      (input) COMPLEX*16 array, dimension (LDAF,N)
   59: *     The block diagonal matrix D and the multipliers used to
   60: *     obtain the factor U or L as computed by ZHETRF.
   61: *
   62: *     LDAF    (input) INTEGER
   63: *     The leading dimension of the array AF.  LDAF >= max(1,N).
   64: *
   65: *     IPIV    (input) INTEGER array, dimension (N)
   66: *     Details of the interchanges and the block structure of D
   67: *     as determined by ZHETRF.
   68: *
   69: *     WORK    (input) COMPLEX*16 array, dimension (2*N)
   70: *
   71: *  =====================================================================
   72: *
   73: *     .. Local Scalars ..
   74:       INTEGER            NCOLS, I, J, K, KP
   75:       DOUBLE PRECISION   AMAX, UMAX, RPVGRW, TMP
   76:       LOGICAL            UPPER, LSAME
   77:       COMPLEX*16         ZDUM
   78: *     ..
   79: *     .. External Functions ..
   80:       EXTERNAL           LSAME, ZLASET
   81: *     ..
   82: *     .. Intrinsic Functions ..
   83:       INTRINSIC          ABS, REAL, DIMAG, MAX, MIN
   84: *     ..
   85: *     .. Statement Functions ..
   86:       DOUBLE PRECISION   CABS1
   87: *     ..
   88: *     .. Statement Function Definitions ..
   89:       CABS1( ZDUM ) = ABS( DBLE ( ZDUM ) ) + ABS( DIMAG ( ZDUM ) )
   90: *     ..
   91: *     .. Executable Statements ..
   92: *
   93:       UPPER = LSAME( 'Upper', UPLO )
   94:       IF ( INFO.EQ.0 ) THEN
   95:          IF (UPPER) THEN
   96:             NCOLS = 1
   97:          ELSE
   98:             NCOLS = N
   99:          END IF
  100:       ELSE
  101:          NCOLS = INFO
  102:       END IF
  103: 
  104:       RPVGRW = 1.0D+0
  105:       DO I = 1, 2*N
  106:          WORK( I ) = 0.0D+0
  107:       END DO
  108: *
  109: *     Find the max magnitude entry of each column of A.  Compute the max
  110: *     for all N columns so we can apply the pivot permutation while
  111: *     looping below.  Assume a full factorization is the common case.
  112: *
  113:       IF ( UPPER ) THEN
  114:          DO J = 1, N
  115:             DO I = 1, J
  116:                WORK( N+I ) = MAX( CABS1( A( I,J ) ), WORK( N+I ) )
  117:                WORK( N+J ) = MAX( CABS1( A( I,J ) ), WORK( N+J ) )
  118:             END DO
  119:          END DO
  120:       ELSE
  121:          DO J = 1, N
  122:             DO I = J, N
  123:                WORK( N+I ) = MAX( CABS1( A( I, J ) ), WORK( N+I ) )
  124:                WORK( N+J ) = MAX( CABS1( A( I, J ) ), WORK( N+J ) )
  125:             END DO
  126:          END DO
  127:       END IF
  128: *
  129: *     Now find the max magnitude entry of each column of U or L.  Also
  130: *     permute the magnitudes of A above so they're in the same order as
  131: *     the factor.
  132: *
  133: *     The iteration orders and permutations were copied from zsytrs.
  134: *     Calls to SSWAP would be severe overkill.
  135: *
  136:       IF ( UPPER ) THEN
  137:          K = N
  138:          DO WHILE ( K .LT. NCOLS .AND. K.GT.0 )
  139:             IF ( IPIV( K ).GT.0 ) THEN
  140: !              1x1 pivot
  141:                KP = IPIV( K )
  142:                IF ( KP .NE. K ) THEN
  143:                   TMP = WORK( N+K )
  144:                   WORK( N+K ) = WORK( N+KP )
  145:                   WORK( N+KP ) = TMP
  146:                END IF
  147:                DO I = 1, K
  148:                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
  149:                END DO
  150:                K = K - 1
  151:             ELSE
  152: !              2x2 pivot
  153:                KP = -IPIV( K )
  154:                TMP = WORK( N+K-1 )
  155:                WORK( N+K-1 ) = WORK( N+KP )
  156:                WORK( N+KP ) = TMP
  157:                DO I = 1, K-1
  158:                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
  159:                   WORK( K-1 ) =
  160:      $                 MAX( CABS1( AF( I, K-1 ) ), WORK( K-1 ) )
  161:                END DO
  162:                WORK( K ) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
  163:                K = K - 2
  164:             END IF
  165:          END DO
  166:          K = NCOLS
  167:          DO WHILE ( K .LE. N )
  168:             IF ( IPIV( K ).GT.0 ) THEN
  169:                KP = IPIV( K )
  170:                IF ( KP .NE. K ) THEN
  171:                   TMP = WORK( N+K )
  172:                   WORK( N+K ) = WORK( N+KP )
  173:                   WORK( N+KP ) = TMP
  174:                END IF
  175:                K = K + 1
  176:             ELSE
  177:                KP = -IPIV( K )
  178:                TMP = WORK( N+K )
  179:                WORK( N+K ) = WORK( N+KP )
  180:                WORK( N+KP ) = TMP
  181:                K = K + 2
  182:             END IF
  183:          END DO
  184:       ELSE
  185:          K = 1
  186:          DO WHILE ( K .LE. NCOLS )
  187:             IF ( IPIV( K ).GT.0 ) THEN
  188: !              1x1 pivot
  189:                KP = IPIV( K )
  190:                IF ( KP .NE. K ) THEN
  191:                   TMP = WORK( N+K )
  192:                   WORK( N+K ) = WORK( N+KP )
  193:                   WORK( N+KP ) = TMP
  194:                END IF
  195:                DO I = K, N
  196:                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
  197:                END DO
  198:                K = K + 1
  199:             ELSE
  200: !              2x2 pivot
  201:                KP = -IPIV( K )
  202:                TMP = WORK( N+K+1 )
  203:                WORK( N+K+1 ) = WORK( N+KP )
  204:                WORK( N+KP ) = TMP
  205:                DO I = K+1, N
  206:                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
  207:                   WORK( K+1 ) =
  208:      $                 MAX( CABS1( AF( I, K+1 ) ) , WORK( K+1 ) )
  209:                END DO
  210:                WORK(K) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
  211:                K = K + 2
  212:             END IF
  213:          END DO
  214:          K = NCOLS
  215:          DO WHILE ( K .GE. 1 )
  216:             IF ( IPIV( K ).GT.0 ) THEN
  217:                KP = IPIV( K )
  218:                IF ( KP .NE. K ) THEN
  219:                   TMP = WORK( N+K )
  220:                   WORK( N+K ) = WORK( N+KP )
  221:                   WORK( N+KP ) = TMP
  222:                END IF
  223:                K = K - 1
  224:             ELSE
  225:                KP = -IPIV( K )
  226:                TMP = WORK( N+K )
  227:                WORK( N+K ) = WORK( N+KP )
  228:                WORK( N+KP ) = TMP
  229:                K = K - 2
  230:             ENDIF
  231:          END DO
  232:       END IF
  233: *
  234: *     Compute the *inverse* of the max element growth factor.  Dividing
  235: *     by zero would imply the largest entry of the factor's column is
  236: *     zero.  Than can happen when either the column of A is zero or
  237: *     massive pivots made the factor underflow to zero.  Neither counts
  238: *     as growth in itself, so simply ignore terms with zero
  239: *     denominators.
  240: *
  241:       IF ( UPPER ) THEN
  242:          DO I = NCOLS, N
  243:             UMAX = WORK( I )
  244:             AMAX = WORK( N+I )
  245:             IF ( UMAX /= 0.0D+0 ) THEN
  246:                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  247:             END IF
  248:          END DO
  249:       ELSE
  250:          DO I = 1, NCOLS
  251:             UMAX = WORK( I )
  252:             AMAX = WORK( N+I )
  253:             IF ( UMAX /= 0.0D+0 ) THEN
  254:                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  255:             END IF
  256:          END DO
  257:       END IF
  258: 
  259:       ZLA_HERPVGRW = RPVGRW
  260:       END

CVSweb interface <joel.bertrand@systella.fr>