File:  [local] / rpl / lapack / lapack / zla_herpvgrw.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:23 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLA_HERPVGRW
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLA_HERPVGRW + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_herpvgrw.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_herpvgrw.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_herpvgrw.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION ZLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF,
   22: *                                               LDAF, IPIV, WORK )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER*1        UPLO
   26: *       INTEGER            N, INFO, LDA, LDAF
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * )
   30: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * )
   31: *       DOUBLE PRECISION   WORK( * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *>
   41: *> ZLA_HERPVGRW computes the reciprocal pivot growth factor
   42: *> norm(A)/norm(U). The "max absolute element" norm is used. If this is
   43: *> much less than 1, the stability of the LU factorization of the
   44: *> (equilibrated) matrix A could be poor. This also means that the
   45: *> solution X, estimated condition numbers, and error bounds could be
   46: *> unreliable.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] UPLO
   53: *> \verbatim
   54: *>          UPLO is CHARACTER*1
   55: *>       = 'U':  Upper triangle of A is stored;
   56: *>       = 'L':  Lower triangle of A is stored.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] N
   60: *> \verbatim
   61: *>          N is INTEGER
   62: *>     The number of linear equations, i.e., the order of the
   63: *>     matrix A.  N >= 0.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] INFO
   67: *> \verbatim
   68: *>          INFO is INTEGER
   69: *>     The value of INFO returned from ZHETRF, .i.e., the pivot in
   70: *>     column INFO is exactly 0.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] A
   74: *> \verbatim
   75: *>          A is COMPLEX*16 array, dimension (LDA,N)
   76: *>     On entry, the N-by-N matrix A.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] LDA
   80: *> \verbatim
   81: *>          LDA is INTEGER
   82: *>     The leading dimension of the array A.  LDA >= max(1,N).
   83: *> \endverbatim
   84: *>
   85: *> \param[in] AF
   86: *> \verbatim
   87: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
   88: *>     The block diagonal matrix D and the multipliers used to
   89: *>     obtain the factor U or L as computed by ZHETRF.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] LDAF
   93: *> \verbatim
   94: *>          LDAF is INTEGER
   95: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
   96: *> \endverbatim
   97: *>
   98: *> \param[in] IPIV
   99: *> \verbatim
  100: *>          IPIV is INTEGER array, dimension (N)
  101: *>     Details of the interchanges and the block structure of D
  102: *>     as determined by ZHETRF.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] WORK
  106: *> \verbatim
  107: *>          WORK is DOUBLE PRECISION array, dimension (2*N)
  108: *> \endverbatim
  109: *
  110: *  Authors:
  111: *  ========
  112: *
  113: *> \author Univ. of Tennessee
  114: *> \author Univ. of California Berkeley
  115: *> \author Univ. of Colorado Denver
  116: *> \author NAG Ltd.
  117: *
  118: *> \date June 2016
  119: *
  120: *> \ingroup complex16HEcomputational
  121: *
  122: *  =====================================================================
  123:       DOUBLE PRECISION FUNCTION ZLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF,
  124:      $                                        LDAF, IPIV, WORK )
  125: *
  126: *  -- LAPACK computational routine (version 3.7.0) --
  127: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  128: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  129: *     June 2016
  130: *
  131: *     .. Scalar Arguments ..
  132:       CHARACTER*1        UPLO
  133:       INTEGER            N, INFO, LDA, LDAF
  134: *     ..
  135: *     .. Array Arguments ..
  136:       INTEGER            IPIV( * )
  137:       COMPLEX*16         A( LDA, * ), AF( LDAF, * )
  138:       DOUBLE PRECISION   WORK( * )
  139: *     ..
  140: *
  141: *  =====================================================================
  142: *
  143: *     .. Local Scalars ..
  144:       INTEGER            NCOLS, I, J, K, KP
  145:       DOUBLE PRECISION   AMAX, UMAX, RPVGRW, TMP
  146:       LOGICAL            UPPER, LSAME
  147:       COMPLEX*16         ZDUM
  148: *     ..
  149: *     .. External Functions ..
  150:       EXTERNAL           LSAME
  151: *     ..
  152: *     .. Intrinsic Functions ..
  153:       INTRINSIC          ABS, REAL, DIMAG, MAX, MIN
  154: *     ..
  155: *     .. Statement Functions ..
  156:       DOUBLE PRECISION   CABS1
  157: *     ..
  158: *     .. Statement Function Definitions ..
  159:       CABS1( ZDUM ) = ABS( DBLE ( ZDUM ) ) + ABS( DIMAG ( ZDUM ) )
  160: *     ..
  161: *     .. Executable Statements ..
  162: *
  163:       UPPER = LSAME( 'Upper', UPLO )
  164:       IF ( INFO.EQ.0 ) THEN
  165:          IF (UPPER) THEN
  166:             NCOLS = 1
  167:          ELSE
  168:             NCOLS = N
  169:          END IF
  170:       ELSE
  171:          NCOLS = INFO
  172:       END IF
  173: 
  174:       RPVGRW = 1.0D+0
  175:       DO I = 1, 2*N
  176:          WORK( I ) = 0.0D+0
  177:       END DO
  178: *
  179: *     Find the max magnitude entry of each column of A.  Compute the max
  180: *     for all N columns so we can apply the pivot permutation while
  181: *     looping below.  Assume a full factorization is the common case.
  182: *
  183:       IF ( UPPER ) THEN
  184:          DO J = 1, N
  185:             DO I = 1, J
  186:                WORK( N+I ) = MAX( CABS1( A( I,J ) ), WORK( N+I ) )
  187:                WORK( N+J ) = MAX( CABS1( A( I,J ) ), WORK( N+J ) )
  188:             END DO
  189:          END DO
  190:       ELSE
  191:          DO J = 1, N
  192:             DO I = J, N
  193:                WORK( N+I ) = MAX( CABS1( A( I, J ) ), WORK( N+I ) )
  194:                WORK( N+J ) = MAX( CABS1( A( I, J ) ), WORK( N+J ) )
  195:             END DO
  196:          END DO
  197:       END IF
  198: *
  199: *     Now find the max magnitude entry of each column of U or L.  Also
  200: *     permute the magnitudes of A above so they're in the same order as
  201: *     the factor.
  202: *
  203: *     The iteration orders and permutations were copied from zsytrs.
  204: *     Calls to SSWAP would be severe overkill.
  205: *
  206:       IF ( UPPER ) THEN
  207:          K = N
  208:          DO WHILE ( K .LT. NCOLS .AND. K.GT.0 )
  209:             IF ( IPIV( K ).GT.0 ) THEN
  210: !              1x1 pivot
  211:                KP = IPIV( K )
  212:                IF ( KP .NE. K ) THEN
  213:                   TMP = WORK( N+K )
  214:                   WORK( N+K ) = WORK( N+KP )
  215:                   WORK( N+KP ) = TMP
  216:                END IF
  217:                DO I = 1, K
  218:                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
  219:                END DO
  220:                K = K - 1
  221:             ELSE
  222: !              2x2 pivot
  223:                KP = -IPIV( K )
  224:                TMP = WORK( N+K-1 )
  225:                WORK( N+K-1 ) = WORK( N+KP )
  226:                WORK( N+KP ) = TMP
  227:                DO I = 1, K-1
  228:                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
  229:                   WORK( K-1 ) =
  230:      $                 MAX( CABS1( AF( I, K-1 ) ), WORK( K-1 ) )
  231:                END DO
  232:                WORK( K ) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
  233:                K = K - 2
  234:             END IF
  235:          END DO
  236:          K = NCOLS
  237:          DO WHILE ( K .LE. N )
  238:             IF ( IPIV( K ).GT.0 ) THEN
  239:                KP = IPIV( K )
  240:                IF ( KP .NE. K ) THEN
  241:                   TMP = WORK( N+K )
  242:                   WORK( N+K ) = WORK( N+KP )
  243:                   WORK( N+KP ) = TMP
  244:                END IF
  245:                K = K + 1
  246:             ELSE
  247:                KP = -IPIV( K )
  248:                TMP = WORK( N+K )
  249:                WORK( N+K ) = WORK( N+KP )
  250:                WORK( N+KP ) = TMP
  251:                K = K + 2
  252:             END IF
  253:          END DO
  254:       ELSE
  255:          K = 1
  256:          DO WHILE ( K .LE. NCOLS )
  257:             IF ( IPIV( K ).GT.0 ) THEN
  258: !              1x1 pivot
  259:                KP = IPIV( K )
  260:                IF ( KP .NE. K ) THEN
  261:                   TMP = WORK( N+K )
  262:                   WORK( N+K ) = WORK( N+KP )
  263:                   WORK( N+KP ) = TMP
  264:                END IF
  265:                DO I = K, N
  266:                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
  267:                END DO
  268:                K = K + 1
  269:             ELSE
  270: !              2x2 pivot
  271:                KP = -IPIV( K )
  272:                TMP = WORK( N+K+1 )
  273:                WORK( N+K+1 ) = WORK( N+KP )
  274:                WORK( N+KP ) = TMP
  275:                DO I = K+1, N
  276:                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
  277:                   WORK( K+1 ) =
  278:      $                 MAX( CABS1( AF( I, K+1 ) ) , WORK( K+1 ) )
  279:                END DO
  280:                WORK(K) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
  281:                K = K + 2
  282:             END IF
  283:          END DO
  284:          K = NCOLS
  285:          DO WHILE ( K .GE. 1 )
  286:             IF ( IPIV( K ).GT.0 ) THEN
  287:                KP = IPIV( K )
  288:                IF ( KP .NE. K ) THEN
  289:                   TMP = WORK( N+K )
  290:                   WORK( N+K ) = WORK( N+KP )
  291:                   WORK( N+KP ) = TMP
  292:                END IF
  293:                K = K - 1
  294:             ELSE
  295:                KP = -IPIV( K )
  296:                TMP = WORK( N+K )
  297:                WORK( N+K ) = WORK( N+KP )
  298:                WORK( N+KP ) = TMP
  299:                K = K - 2
  300:             ENDIF
  301:          END DO
  302:       END IF
  303: *
  304: *     Compute the *inverse* of the max element growth factor.  Dividing
  305: *     by zero would imply the largest entry of the factor's column is
  306: *     zero.  Than can happen when either the column of A is zero or
  307: *     massive pivots made the factor underflow to zero.  Neither counts
  308: *     as growth in itself, so simply ignore terms with zero
  309: *     denominators.
  310: *
  311:       IF ( UPPER ) THEN
  312:          DO I = NCOLS, N
  313:             UMAX = WORK( I )
  314:             AMAX = WORK( N+I )
  315:             IF ( UMAX /= 0.0D+0 ) THEN
  316:                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  317:             END IF
  318:          END DO
  319:       ELSE
  320:          DO I = 1, NCOLS
  321:             UMAX = WORK( I )
  322:             AMAX = WORK( N+I )
  323:             IF ( UMAX /= 0.0D+0 ) THEN
  324:                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  325:             END IF
  326:          END DO
  327:       END IF
  328: 
  329:       ZLA_HERPVGRW = RPVGRW
  330:       END

CVSweb interface <joel.bertrand@systella.fr>