File:  [local] / rpl / lapack / lapack / zla_herfsx_extended.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:27 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLA_HERFSX_EXTENDED improves the computed solution to a system of linear equations for Hermitian indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLA_HERFSX_EXTENDED + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_herfsx_extended.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_herfsx_extended.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_herfsx_extended.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLA_HERFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
   22: *                                       AF, LDAF, IPIV, COLEQU, C, B, LDB,
   23: *                                       Y, LDY, BERR_OUT, N_NORMS,
   24: *                                       ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
   25: *                                       AYB, DY, Y_TAIL, RCOND, ITHRESH,
   26: *                                       RTHRESH, DZ_UB, IGNORE_CWISE,
   27: *                                       INFO )
   28: *
   29: *       .. Scalar Arguments ..
   30: *       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
   31: *      $                   N_NORMS, ITHRESH
   32: *       CHARACTER          UPLO
   33: *       LOGICAL            COLEQU, IGNORE_CWISE
   34: *       DOUBLE PRECISION   RTHRESH, DZ_UB
   35: *       ..
   36: *       .. Array Arguments ..
   37: *       INTEGER            IPIV( * )
   38: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   39: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
   40: *       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
   41: *      $                   ERR_BNDS_NORM( NRHS, * ),
   42: *      $                   ERR_BNDS_COMP( NRHS, * )
   43: *       ..
   44: *
   45: *
   46: *> \par Purpose:
   47: *  =============
   48: *>
   49: *> \verbatim
   50: *>
   51: *> ZLA_HERFSX_EXTENDED improves the computed solution to a system of
   52: *> linear equations by performing extra-precise iterative refinement
   53: *> and provides error bounds and backward error estimates for the solution.
   54: *> This subroutine is called by ZHERFSX to perform iterative refinement.
   55: *> In addition to normwise error bound, the code provides maximum
   56: *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
   57: *> and ERR_BNDS_COMP for details of the error bounds. Note that this
   58: *> subroutine is only responsible for setting the second fields of
   59: *> ERR_BNDS_NORM and ERR_BNDS_COMP.
   60: *> \endverbatim
   61: *
   62: *  Arguments:
   63: *  ==========
   64: *
   65: *> \param[in] PREC_TYPE
   66: *> \verbatim
   67: *>          PREC_TYPE is INTEGER
   68: *>     Specifies the intermediate precision to be used in refinement.
   69: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and P
   70: *>          = 'S':  Single
   71: *>          = 'D':  Double
   72: *>          = 'I':  Indigenous
   73: *>          = 'X' or 'E':  Extra
   74: *> \endverbatim
   75: *>
   76: *> \param[in] UPLO
   77: *> \verbatim
   78: *>          UPLO is CHARACTER*1
   79: *>       = 'U':  Upper triangle of A is stored;
   80: *>       = 'L':  Lower triangle of A is stored.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] N
   84: *> \verbatim
   85: *>          N is INTEGER
   86: *>     The number of linear equations, i.e., the order of the
   87: *>     matrix A.  N >= 0.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] NRHS
   91: *> \verbatim
   92: *>          NRHS is INTEGER
   93: *>     The number of right-hand-sides, i.e., the number of columns of the
   94: *>     matrix B.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] A
   98: *> \verbatim
   99: *>          A is COMPLEX*16 array, dimension (LDA,N)
  100: *>     On entry, the N-by-N matrix A.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDA
  104: *> \verbatim
  105: *>          LDA is INTEGER
  106: *>     The leading dimension of the array A.  LDA >= max(1,N).
  107: *> \endverbatim
  108: *>
  109: *> \param[in] AF
  110: *> \verbatim
  111: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
  112: *>     The block diagonal matrix D and the multipliers used to
  113: *>     obtain the factor U or L as computed by ZHETRF.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDAF
  117: *> \verbatim
  118: *>          LDAF is INTEGER
  119: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  120: *> \endverbatim
  121: *>
  122: *> \param[in] IPIV
  123: *> \verbatim
  124: *>          IPIV is INTEGER array, dimension (N)
  125: *>     Details of the interchanges and the block structure of D
  126: *>     as determined by ZHETRF.
  127: *> \endverbatim
  128: *>
  129: *> \param[in] COLEQU
  130: *> \verbatim
  131: *>          COLEQU is LOGICAL
  132: *>     If .TRUE. then column equilibration was done to A before calling
  133: *>     this routine. This is needed to compute the solution and error
  134: *>     bounds correctly.
  135: *> \endverbatim
  136: *>
  137: *> \param[in] C
  138: *> \verbatim
  139: *>          C is DOUBLE PRECISION array, dimension (N)
  140: *>     The column scale factors for A. If COLEQU = .FALSE., C
  141: *>     is not accessed. If C is input, each element of C should be a power
  142: *>     of the radix to ensure a reliable solution and error estimates.
  143: *>     Scaling by powers of the radix does not cause rounding errors unless
  144: *>     the result underflows or overflows. Rounding errors during scaling
  145: *>     lead to refining with a matrix that is not equivalent to the
  146: *>     input matrix, producing error estimates that may not be
  147: *>     reliable.
  148: *> \endverbatim
  149: *>
  150: *> \param[in] B
  151: *> \verbatim
  152: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  153: *>     The right-hand-side matrix B.
  154: *> \endverbatim
  155: *>
  156: *> \param[in] LDB
  157: *> \verbatim
  158: *>          LDB is INTEGER
  159: *>     The leading dimension of the array B.  LDB >= max(1,N).
  160: *> \endverbatim
  161: *>
  162: *> \param[in,out] Y
  163: *> \verbatim
  164: *>          Y is COMPLEX*16 array, dimension (LDY,NRHS)
  165: *>     On entry, the solution matrix X, as computed by ZHETRS.
  166: *>     On exit, the improved solution matrix Y.
  167: *> \endverbatim
  168: *>
  169: *> \param[in] LDY
  170: *> \verbatim
  171: *>          LDY is INTEGER
  172: *>     The leading dimension of the array Y.  LDY >= max(1,N).
  173: *> \endverbatim
  174: *>
  175: *> \param[out] BERR_OUT
  176: *> \verbatim
  177: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
  178: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
  179: *>     error for right-hand-side j from the formula
  180: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  181: *>     where abs(Z) is the componentwise absolute value of the matrix
  182: *>     or vector Z. This is computed by ZLA_LIN_BERR.
  183: *> \endverbatim
  184: *>
  185: *> \param[in] N_NORMS
  186: *> \verbatim
  187: *>          N_NORMS is INTEGER
  188: *>     Determines which error bounds to return (see ERR_BNDS_NORM
  189: *>     and ERR_BNDS_COMP).
  190: *>     If N_NORMS >= 1 return normwise error bounds.
  191: *>     If N_NORMS >= 2 return componentwise error bounds.
  192: *> \endverbatim
  193: *>
  194: *> \param[in,out] ERR_BNDS_NORM
  195: *> \verbatim
  196: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  197: *>     For each right-hand side, this array contains information about
  198: *>     various error bounds and condition numbers corresponding to the
  199: *>     normwise relative error, which is defined as follows:
  200: *>
  201: *>     Normwise relative error in the ith solution vector:
  202: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  203: *>            ------------------------------
  204: *>                  max_j abs(X(j,i))
  205: *>
  206: *>     The array is indexed by the type of error information as described
  207: *>     below. There currently are up to three pieces of information
  208: *>     returned.
  209: *>
  210: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  211: *>     right-hand side.
  212: *>
  213: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  214: *>     three fields:
  215: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  216: *>              reciprocal condition number is less than the threshold
  217: *>              sqrt(n) * slamch('Epsilon').
  218: *>
  219: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  220: *>              almost certainly within a factor of 10 of the true error
  221: *>              so long as the next entry is greater than the threshold
  222: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  223: *>              be trusted if the previous boolean is true.
  224: *>
  225: *>     err = 3  Reciprocal condition number: Estimated normwise
  226: *>              reciprocal condition number.  Compared with the threshold
  227: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  228: *>              estimate is "guaranteed". These reciprocal condition
  229: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  230: *>              appropriately scaled matrix Z.
  231: *>              Let Z = S*A, where S scales each row by a power of the
  232: *>              radix so all absolute row sums of Z are approximately 1.
  233: *>
  234: *>     This subroutine is only responsible for setting the second field
  235: *>     above.
  236: *>     See Lapack Working Note 165 for further details and extra
  237: *>     cautions.
  238: *> \endverbatim
  239: *>
  240: *> \param[in,out] ERR_BNDS_COMP
  241: *> \verbatim
  242: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  243: *>     For each right-hand side, this array contains information about
  244: *>     various error bounds and condition numbers corresponding to the
  245: *>     componentwise relative error, which is defined as follows:
  246: *>
  247: *>     Componentwise relative error in the ith solution vector:
  248: *>                    abs(XTRUE(j,i) - X(j,i))
  249: *>             max_j ----------------------
  250: *>                         abs(X(j,i))
  251: *>
  252: *>     The array is indexed by the right-hand side i (on which the
  253: *>     componentwise relative error depends), and the type of error
  254: *>     information as described below. There currently are up to three
  255: *>     pieces of information returned for each right-hand side. If
  256: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  257: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
  258: *>     the first (:,N_ERR_BNDS) entries are returned.
  259: *>
  260: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  261: *>     right-hand side.
  262: *>
  263: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  264: *>     three fields:
  265: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  266: *>              reciprocal condition number is less than the threshold
  267: *>              sqrt(n) * slamch('Epsilon').
  268: *>
  269: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  270: *>              almost certainly within a factor of 10 of the true error
  271: *>              so long as the next entry is greater than the threshold
  272: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  273: *>              be trusted if the previous boolean is true.
  274: *>
  275: *>     err = 3  Reciprocal condition number: Estimated componentwise
  276: *>              reciprocal condition number.  Compared with the threshold
  277: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  278: *>              estimate is "guaranteed". These reciprocal condition
  279: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  280: *>              appropriately scaled matrix Z.
  281: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  282: *>              current right-hand side and S scales each row of
  283: *>              A*diag(x) by a power of the radix so all absolute row
  284: *>              sums of Z are approximately 1.
  285: *>
  286: *>     This subroutine is only responsible for setting the second field
  287: *>     above.
  288: *>     See Lapack Working Note 165 for further details and extra
  289: *>     cautions.
  290: *> \endverbatim
  291: *>
  292: *> \param[in] RES
  293: *> \verbatim
  294: *>          RES is COMPLEX*16 array, dimension (N)
  295: *>     Workspace to hold the intermediate residual.
  296: *> \endverbatim
  297: *>
  298: *> \param[in] AYB
  299: *> \verbatim
  300: *>          AYB is DOUBLE PRECISION array, dimension (N)
  301: *>     Workspace.
  302: *> \endverbatim
  303: *>
  304: *> \param[in] DY
  305: *> \verbatim
  306: *>          DY is COMPLEX*16 array, dimension (N)
  307: *>     Workspace to hold the intermediate solution.
  308: *> \endverbatim
  309: *>
  310: *> \param[in] Y_TAIL
  311: *> \verbatim
  312: *>          Y_TAIL is COMPLEX*16 array, dimension (N)
  313: *>     Workspace to hold the trailing bits of the intermediate solution.
  314: *> \endverbatim
  315: *>
  316: *> \param[in] RCOND
  317: *> \verbatim
  318: *>          RCOND is DOUBLE PRECISION
  319: *>     Reciprocal scaled condition number.  This is an estimate of the
  320: *>     reciprocal Skeel condition number of the matrix A after
  321: *>     equilibration (if done).  If this is less than the machine
  322: *>     precision (in particular, if it is zero), the matrix is singular
  323: *>     to working precision.  Note that the error may still be small even
  324: *>     if this number is very small and the matrix appears ill-
  325: *>     conditioned.
  326: *> \endverbatim
  327: *>
  328: *> \param[in] ITHRESH
  329: *> \verbatim
  330: *>          ITHRESH is INTEGER
  331: *>     The maximum number of residual computations allowed for
  332: *>     refinement. The default is 10. For 'aggressive' set to 100 to
  333: *>     permit convergence using approximate factorizations or
  334: *>     factorizations other than LU. If the factorization uses a
  335: *>     technique other than Gaussian elimination, the guarantees in
  336: *>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
  337: *> \endverbatim
  338: *>
  339: *> \param[in] RTHRESH
  340: *> \verbatim
  341: *>          RTHRESH is DOUBLE PRECISION
  342: *>     Determines when to stop refinement if the error estimate stops
  343: *>     decreasing. Refinement will stop when the next solution no longer
  344: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  345: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  346: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
  347: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
  348: *>     for more details.
  349: *> \endverbatim
  350: *>
  351: *> \param[in] DZ_UB
  352: *> \verbatim
  353: *>          DZ_UB is DOUBLE PRECISION
  354: *>     Determines when to start considering componentwise convergence.
  355: *>     Componentwise convergence is only considered after each component
  356: *>     of the solution Y is stable, which we define as the relative
  357: *>     change in each component being less than DZ_UB. The default value
  358: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
  359: *>     more details.
  360: *> \endverbatim
  361: *>
  362: *> \param[in] IGNORE_CWISE
  363: *> \verbatim
  364: *>          IGNORE_CWISE is LOGICAL
  365: *>     If .TRUE. then ignore componentwise convergence. Default value
  366: *>     is .FALSE..
  367: *> \endverbatim
  368: *>
  369: *> \param[out] INFO
  370: *> \verbatim
  371: *>          INFO is INTEGER
  372: *>       = 0:  Successful exit.
  373: *>       < 0:  if INFO = -i, the ith argument to ZLA_HERFSX_EXTENDED had an illegal
  374: *>             value
  375: *> \endverbatim
  376: *
  377: *  Authors:
  378: *  ========
  379: *
  380: *> \author Univ. of Tennessee
  381: *> \author Univ. of California Berkeley
  382: *> \author Univ. of Colorado Denver
  383: *> \author NAG Ltd.
  384: *
  385: *> \ingroup complex16HEcomputational
  386: *
  387: *  =====================================================================
  388:       SUBROUTINE ZLA_HERFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
  389:      $                                AF, LDAF, IPIV, COLEQU, C, B, LDB,
  390:      $                                Y, LDY, BERR_OUT, N_NORMS,
  391:      $                                ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
  392:      $                                AYB, DY, Y_TAIL, RCOND, ITHRESH,
  393:      $                                RTHRESH, DZ_UB, IGNORE_CWISE,
  394:      $                                INFO )
  395: *
  396: *  -- LAPACK computational routine --
  397: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  398: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  399: *
  400: *     .. Scalar Arguments ..
  401:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
  402:      $                   N_NORMS, ITHRESH
  403:       CHARACTER          UPLO
  404:       LOGICAL            COLEQU, IGNORE_CWISE
  405:       DOUBLE PRECISION   RTHRESH, DZ_UB
  406: *     ..
  407: *     .. Array Arguments ..
  408:       INTEGER            IPIV( * )
  409:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  410:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  411:       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
  412:      $                   ERR_BNDS_NORM( NRHS, * ),
  413:      $                   ERR_BNDS_COMP( NRHS, * )
  414: *     ..
  415: *
  416: *  =====================================================================
  417: *
  418: *     .. Local Scalars ..
  419:       INTEGER            UPLO2, CNT, I, J, X_STATE, Z_STATE,
  420:      $                   Y_PREC_STATE
  421:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  422:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  423:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  424:      $                   EPS, HUGEVAL, INCR_THRESH
  425:       LOGICAL            INCR_PREC, UPPER
  426:       COMPLEX*16         ZDUM
  427: *     ..
  428: *     .. Parameters ..
  429:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  430:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
  431:      $                   EXTRA_Y
  432:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  433:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
  434:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  435:      $                   EXTRA_Y = 2 )
  436:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  437:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  438:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  439:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  440:      $                   BERR_I = 3 )
  441:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  442:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  443:      $                   PIV_GROWTH_I = 9 )
  444:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  445:      $                   LA_LINRX_CWISE_I
  446:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  447:      $                   LA_LINRX_ITHRESH_I = 2 )
  448:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  449:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  450:      $                   LA_LINRX_RCOND_I
  451:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  452:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  453: *     ..
  454: *     .. External Functions ..
  455:       LOGICAL            LSAME
  456:       EXTERNAL           ILAUPLO
  457:       INTEGER            ILAUPLO
  458: *     ..
  459: *     .. External Subroutines ..
  460:       EXTERNAL           ZAXPY, ZCOPY, ZHETRS, ZHEMV, BLAS_ZHEMV_X,
  461:      $                   BLAS_ZHEMV2_X, ZLA_HEAMV, ZLA_WWADDW,
  462:      $                   ZLA_LIN_BERR
  463:       DOUBLE PRECISION   DLAMCH
  464: *     ..
  465: *     .. Intrinsic Functions ..
  466:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
  467: *     ..
  468: *     .. Statement Functions ..
  469:       DOUBLE PRECISION   CABS1
  470: *     ..
  471: *     .. Statement Function Definitions ..
  472:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  473: *     ..
  474: *     .. Executable Statements ..
  475: *
  476:       INFO = 0
  477:       UPPER = LSAME( UPLO, 'U' )
  478:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  479:          INFO = -2
  480:       ELSE IF( N.LT.0 ) THEN
  481:          INFO = -3
  482:       ELSE IF( NRHS.LT.0 ) THEN
  483:          INFO = -4
  484:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  485:          INFO = -6
  486:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  487:          INFO = -8
  488:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  489:          INFO = -13
  490:       ELSE IF( LDY.LT.MAX( 1, N ) ) THEN
  491:          INFO = -15
  492:       END IF
  493:       IF( INFO.NE.0 ) THEN
  494:          CALL XERBLA( 'ZLA_HERFSX_EXTENDED', -INFO )
  495:          RETURN
  496:       END IF
  497:       EPS = DLAMCH( 'Epsilon' )
  498:       HUGEVAL = DLAMCH( 'Overflow' )
  499: *     Force HUGEVAL to Inf
  500:       HUGEVAL = HUGEVAL * HUGEVAL
  501: *     Using HUGEVAL may lead to spurious underflows.
  502:       INCR_THRESH = DBLE( N ) * EPS
  503: 
  504:       IF ( LSAME ( UPLO, 'L' ) ) THEN
  505:          UPLO2 = ILAUPLO( 'L' )
  506:       ELSE
  507:          UPLO2 = ILAUPLO( 'U' )
  508:       ENDIF
  509: 
  510:       DO J = 1, NRHS
  511:          Y_PREC_STATE = EXTRA_RESIDUAL
  512:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  513:             DO I = 1, N
  514:                Y_TAIL( I ) = 0.0D+0
  515:             END DO
  516:          END IF
  517: 
  518:          DXRAT = 0.0D+0
  519:          DXRATMAX = 0.0D+0
  520:          DZRAT = 0.0D+0
  521:          DZRATMAX = 0.0D+0
  522:          FINAL_DX_X = HUGEVAL
  523:          FINAL_DZ_Z = HUGEVAL
  524:          PREVNORMDX = HUGEVAL
  525:          PREV_DZ_Z = HUGEVAL
  526:          DZ_Z = HUGEVAL
  527:          DX_X = HUGEVAL
  528: 
  529:          X_STATE = WORKING_STATE
  530:          Z_STATE = UNSTABLE_STATE
  531:          INCR_PREC = .FALSE.
  532: 
  533:          DO CNT = 1, ITHRESH
  534: *
  535: *         Compute residual RES = B_s - op(A_s) * Y,
  536: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
  537: *
  538:             CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
  539:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
  540:                CALL ZHEMV( UPLO, N, DCMPLX(-1.0D+0), A, LDA, Y( 1, J ),
  541:      $              1, DCMPLX(1.0D+0), RES, 1 )
  542:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
  543:                CALL BLAS_ZHEMV_X( UPLO2, N, DCMPLX(-1.0D+0), A, LDA,
  544:      $              Y( 1, J ), 1, DCMPLX(1.0D+0), RES, 1, PREC_TYPE)
  545:             ELSE
  546:                CALL BLAS_ZHEMV2_X(UPLO2, N, DCMPLX(-1.0D+0), A, LDA,
  547:      $              Y(1, J), Y_TAIL, 1, DCMPLX(1.0D+0), RES, 1,
  548:      $     PREC_TYPE)
  549:             END IF
  550: 
  551: !         XXX: RES is no longer needed.
  552:             CALL ZCOPY( N, RES, 1, DY, 1 )
  553:             CALL ZHETRS( UPLO, N, 1, AF, LDAF, IPIV, DY, N, INFO )
  554: *
  555: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  556: *
  557:             NORMX = 0.0D+0
  558:             NORMY = 0.0D+0
  559:             NORMDX = 0.0D+0
  560:             DZ_Z = 0.0D+0
  561:             YMIN = HUGEVAL
  562: 
  563:             DO I = 1, N
  564:                YK = CABS1( Y( I, J ) )
  565:                DYK = CABS1( DY( I ) )
  566: 
  567:                IF (YK .NE. 0.0D+0) THEN
  568:                   DZ_Z = MAX( DZ_Z, DYK / YK )
  569:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  570:                   DZ_Z = HUGEVAL
  571:                END IF
  572: 
  573:                YMIN = MIN( YMIN, YK )
  574: 
  575:                NORMY = MAX( NORMY, YK )
  576: 
  577:                IF ( COLEQU ) THEN
  578:                   NORMX = MAX( NORMX, YK * C( I ) )
  579:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
  580:                ELSE
  581:                   NORMX = NORMY
  582:                   NORMDX = MAX( NORMDX, DYK )
  583:                END IF
  584:             END DO
  585: 
  586:             IF ( NORMX .NE. 0.0D+0 ) THEN
  587:                DX_X = NORMDX / NORMX
  588:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  589:                DX_X = 0.0D+0
  590:             ELSE
  591:                DX_X = HUGEVAL
  592:             END IF
  593: 
  594:             DXRAT = NORMDX / PREVNORMDX
  595:             DZRAT = DZ_Z / PREV_DZ_Z
  596: *
  597: *         Check termination criteria.
  598: *
  599:             IF ( YMIN*RCOND .LT. INCR_THRESH*NORMY
  600:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
  601:      $           INCR_PREC = .TRUE.
  602: 
  603:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  604:      $           X_STATE = WORKING_STATE
  605:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
  606:                IF ( DX_X .LE. EPS ) THEN
  607:                   X_STATE = CONV_STATE
  608:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  609:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  610:                      INCR_PREC = .TRUE.
  611:                   ELSE
  612:                      X_STATE = NOPROG_STATE
  613:                   END IF
  614:                ELSE
  615:                   IF (DXRAT .GT. DXRATMAX) DXRATMAX = DXRAT
  616:                END IF
  617:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  618:             END IF
  619: 
  620:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  621:      $           Z_STATE = WORKING_STATE
  622:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  623:      $           Z_STATE = WORKING_STATE
  624:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  625:                IF ( DZ_Z .LE. EPS ) THEN
  626:                   Z_STATE = CONV_STATE
  627:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  628:                   Z_STATE = UNSTABLE_STATE
  629:                   DZRATMAX = 0.0D+0
  630:                   FINAL_DZ_Z = HUGEVAL
  631:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  632:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  633:                      INCR_PREC = .TRUE.
  634:                   ELSE
  635:                      Z_STATE = NOPROG_STATE
  636:                   END IF
  637:                ELSE
  638:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  639:                END IF
  640:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  641:             END IF
  642: 
  643:             IF ( X_STATE.NE.WORKING_STATE.AND.
  644:      $           ( IGNORE_CWISE.OR.Z_STATE.NE.WORKING_STATE ) )
  645:      $           GOTO 666
  646: 
  647:             IF ( INCR_PREC ) THEN
  648:                INCR_PREC = .FALSE.
  649:                Y_PREC_STATE = Y_PREC_STATE + 1
  650:                DO I = 1, N
  651:                   Y_TAIL( I ) = 0.0D+0
  652:                END DO
  653:             END IF
  654: 
  655:             PREVNORMDX = NORMDX
  656:             PREV_DZ_Z = DZ_Z
  657: *
  658: *           Update soluton.
  659: *
  660:             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
  661:                CALL ZAXPY( N, DCMPLX(1.0D+0), DY, 1, Y(1,J), 1 )
  662:             ELSE
  663:                CALL ZLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
  664:             END IF
  665: 
  666:          END DO
  667: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
  668:  666     CONTINUE
  669: *
  670: *     Set final_* when cnt hits ithresh.
  671: *
  672:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  673:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  674: *
  675: *     Compute error bounds.
  676: *
  677:          IF ( N_NORMS .GE. 1 ) THEN
  678:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
  679:      $           FINAL_DX_X / (1 - DXRATMAX)
  680:          END IF
  681:          IF (N_NORMS .GE. 2) THEN
  682:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
  683:      $           FINAL_DZ_Z / (1 - DZRATMAX)
  684:          END IF
  685: *
  686: *     Compute componentwise relative backward error from formula
  687: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  688: *     where abs(Z) is the componentwise absolute value of the matrix
  689: *     or vector Z.
  690: *
  691: *         Compute residual RES = B_s - op(A_s) * Y,
  692: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
  693: *
  694:          CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
  695:          CALL ZHEMV( UPLO, N, DCMPLX(-1.0D+0), A, LDA, Y(1,J), 1,
  696:      $        DCMPLX(1.0D+0), RES, 1 )
  697: 
  698:          DO I = 1, N
  699:             AYB( I ) = CABS1( B( I, J ) )
  700:          END DO
  701: *
  702: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
  703: *
  704:          CALL ZLA_HEAMV( UPLO2, N, 1.0D+0,
  705:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
  706: 
  707:          CALL ZLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
  708: *
  709: *     End of loop for each RHS.
  710: *
  711:       END DO
  712: *
  713:       RETURN
  714: *
  715: *     End of ZLA_HERFSX_EXTENDED
  716: *
  717:       END

CVSweb interface <joel.bertrand@systella.fr>