File:  [local] / rpl / lapack / lapack / zla_hercond_c.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:21:09 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Ajout des nouveaux fichiers pour Lapack 3.2.2.

    1:       DOUBLE PRECISION FUNCTION ZLA_HERCOND_C( UPLO, N, A, LDA, AF, 
    2:      $                                         LDAF, IPIV, C, CAPPLY,
    3:      $                                         INFO, WORK, RWORK )
    4: *
    5: *     -- LAPACK routine (version 3.2.1)                                 --
    6: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    7: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    8: *     -- April 2009                                                   --
    9: *
   10: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   11: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   12: *
   13:       IMPLICIT NONE
   14: *     ..
   15: *     .. Scalar Arguments ..
   16:       CHARACTER          UPLO
   17:       LOGICAL            CAPPLY
   18:       INTEGER            N, LDA, LDAF, INFO
   19: *     ..
   20: *     .. Array Arguments ..
   21:       INTEGER            IPIV( * )
   22:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * )
   23:       DOUBLE PRECISION   C ( * ), RWORK( * )
   24: *     ..
   25: *
   26: *  Purpose
   27: *  =======
   28: *
   29: *     ZLA_HERCOND_C computes the infinity norm condition number of
   30: *     op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *     UPLO    (input) CHARACTER*1
   36: *       = 'U':  Upper triangle of A is stored;
   37: *       = 'L':  Lower triangle of A is stored.
   38: *
   39: *     N       (input) INTEGER
   40: *     The number of linear equations, i.e., the order of the
   41: *     matrix A.  N >= 0.
   42: *
   43: *     A       (input) COMPLEX*16 array, dimension (LDA,N)
   44: *     On entry, the N-by-N matrix A
   45: *
   46: *     LDA     (input) INTEGER
   47: *     The leading dimension of the array A.  LDA >= max(1,N).
   48: *
   49: *     AF      (input) COMPLEX*16 array, dimension (LDAF,N)
   50: *     The block diagonal matrix D and the multipliers used to
   51: *     obtain the factor U or L as computed by ZHETRF.
   52: *
   53: *     LDAF    (input) INTEGER
   54: *     The leading dimension of the array AF.  LDAF >= max(1,N).
   55: *
   56: *     IPIV    (input) INTEGER array, dimension (N)
   57: *     Details of the interchanges and the block structure of D
   58: *     as determined by CHETRF.
   59: *
   60: *     C       (input) DOUBLE PRECISION array, dimension (N)
   61: *     The vector C in the formula op(A) * inv(diag(C)).
   62: *
   63: *     CAPPLY  (input) LOGICAL
   64: *     If .TRUE. then access the vector C in the formula above.
   65: *
   66: *     INFO    (output) INTEGER
   67: *       = 0:  Successful exit.
   68: *     i > 0:  The ith argument is invalid.
   69: *
   70: *     WORK    (input) COMPLEX*16 array, dimension (2*N).
   71: *     Workspace.
   72: *
   73: *     RWORK   (input) DOUBLE PRECISION array, dimension (N).
   74: *     Workspace.
   75: *
   76: *  =====================================================================
   77: *
   78: *     .. Local Scalars ..
   79:       INTEGER            KASE, I, J
   80:       DOUBLE PRECISION   AINVNM, ANORM, TMP
   81:       LOGICAL            UP
   82:       COMPLEX*16         ZDUM
   83: *     ..
   84: *     .. Local Arrays ..
   85:       INTEGER            ISAVE( 3 )
   86: *     ..
   87: *     .. External Functions ..
   88:       LOGICAL            LSAME
   89:       EXTERNAL           LSAME
   90: *     ..
   91: *     .. External Subroutines ..
   92:       EXTERNAL           ZLACN2, ZHETRS, XERBLA
   93: *     ..
   94: *     .. Intrinsic Functions ..
   95:       INTRINSIC          ABS, MAX
   96: *     ..
   97: *     .. Statement Functions ..
   98:       DOUBLE PRECISION   CABS1
   99: *     ..
  100: *     .. Statement Function Definitions ..
  101:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  102: *     ..
  103: *     .. Executable Statements ..
  104: *
  105:       ZLA_HERCOND_C = 0.0D+0
  106: *
  107:       INFO = 0
  108:       IF( N.LT.0 ) THEN
  109:          INFO = -2
  110:       END IF
  111:       IF( INFO.NE.0 ) THEN
  112:          CALL XERBLA( 'ZLA_HERCOND_C', -INFO )
  113:          RETURN
  114:       END IF
  115:       UP = .FALSE.
  116:       IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
  117: *
  118: *     Compute norm of op(A)*op2(C).
  119: *
  120:       ANORM = 0.0D+0
  121:       IF ( UP ) THEN
  122:          DO I = 1, N
  123:             TMP = 0.0D+0
  124:             IF ( CAPPLY ) THEN
  125:                DO J = 1, I
  126:                   TMP = TMP + CABS1( A( J, I ) ) / C( J )
  127:                END DO
  128:                DO J = I+1, N
  129:                   TMP = TMP + CABS1( A( I, J ) ) / C( J )
  130:                END DO
  131:             ELSE
  132:                DO J = 1, I
  133:                   TMP = TMP + CABS1( A( J, I ) )
  134:                END DO
  135:                DO J = I+1, N
  136:                   TMP = TMP + CABS1( A( I, J ) )
  137:                END DO
  138:             END IF
  139:             RWORK( I ) = TMP
  140:             ANORM = MAX( ANORM, TMP )
  141:          END DO
  142:       ELSE
  143:          DO I = 1, N
  144:             TMP = 0.0D+0
  145:             IF ( CAPPLY ) THEN
  146:                DO J = 1, I
  147:                   TMP = TMP + CABS1( A( I, J ) ) / C( J )
  148:                END DO
  149:                DO J = I+1, N
  150:                   TMP = TMP + CABS1( A( J, I ) ) / C( J )
  151:                END DO
  152:             ELSE
  153:                DO J = 1, I
  154:                   TMP = TMP + CABS1( A( I, J ) )
  155:                END DO
  156:                DO J = I+1, N
  157:                   TMP = TMP + CABS1( A( J, I ) )
  158:                END DO
  159:             END IF
  160:             RWORK( I ) = TMP
  161:             ANORM = MAX( ANORM, TMP )
  162:          END DO
  163:       END IF
  164: *
  165: *     Quick return if possible.
  166: *
  167:       IF( N.EQ.0 ) THEN
  168:          ZLA_HERCOND_C = 1.0D+0
  169:          RETURN
  170:       ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
  171:          RETURN
  172:       END IF
  173: *
  174: *     Estimate the norm of inv(op(A)).
  175: *
  176:       AINVNM = 0.0D+0
  177: *
  178:       KASE = 0
  179:    10 CONTINUE
  180:       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  181:       IF( KASE.NE.0 ) THEN
  182:          IF( KASE.EQ.2 ) THEN
  183: *
  184: *           Multiply by R.
  185: *
  186:             DO I = 1, N
  187:                WORK( I ) = WORK( I ) * RWORK( I )
  188:             END DO
  189: *
  190:             IF ( UP ) THEN
  191:                CALL ZHETRS( 'U', N, 1, AF, LDAF, IPIV,
  192:      $            WORK, N, INFO )
  193:             ELSE
  194:                CALL ZHETRS( 'L', N, 1, AF, LDAF, IPIV,
  195:      $            WORK, N, INFO )
  196:             ENDIF
  197: *
  198: *           Multiply by inv(C).
  199: *
  200:             IF ( CAPPLY ) THEN
  201:                DO I = 1, N
  202:                   WORK( I ) = WORK( I ) * C( I )
  203:                END DO
  204:             END IF
  205:          ELSE
  206: *
  207: *           Multiply by inv(C').
  208: *
  209:             IF ( CAPPLY ) THEN
  210:                DO I = 1, N
  211:                   WORK( I ) = WORK( I ) * C( I )
  212:                END DO
  213:             END IF
  214: *
  215:             IF ( UP ) THEN
  216:                CALL ZHETRS( 'U', N, 1, AF, LDAF, IPIV,
  217:      $            WORK, N, INFO )
  218:             ELSE
  219:                CALL ZHETRS( 'L', N, 1, AF, LDAF, IPIV,
  220:      $            WORK, N, INFO )
  221:             END IF
  222: *
  223: *           Multiply by R.
  224: *
  225:             DO I = 1, N
  226:                WORK( I ) = WORK( I ) * RWORK( I )
  227:             END DO
  228:          END IF
  229:          GO TO 10
  230:       END IF
  231: *
  232: *     Compute the estimate of the reciprocal condition number.
  233: *
  234:       IF( AINVNM .NE. 0.0D+0 )
  235:      $   ZLA_HERCOND_C = 1.0D+0 / AINVNM
  236: *
  237:       RETURN
  238: *
  239:       END

CVSweb interface <joel.bertrand@systella.fr>