File:  [local] / rpl / lapack / lapack / zla_heamv.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:21:09 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Ajout des nouveaux fichiers pour Lapack 3.2.2.

    1:       SUBROUTINE ZLA_HEAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
    2:      $                      INCY )
    3: *
    4: *     -- LAPACK routine (version 3.2.2)                                 --
    5: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    6: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    7: *     -- June 2010                                                    --
    8: *
    9: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   10: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   11: *
   12:       IMPLICIT NONE
   13: *     ..
   14: *     .. Scalar Arguments ..
   15:       DOUBLE PRECISION   ALPHA, BETA
   16:       INTEGER            INCX, INCY, LDA, N, UPLO
   17: *     ..
   18: *     .. Array Arguments ..
   19:       COMPLEX*16         A( LDA, * ), X( * )
   20:       DOUBLE PRECISION   Y( * )
   21: *     ..
   22: *
   23: *  Purpose
   24: *  =======
   25: *
   26: *  ZLA_SYAMV  performs the matrix-vector operation
   27: *
   28: *          y := alpha*abs(A)*abs(x) + beta*abs(y),
   29: *
   30: *  where alpha and beta are scalars, x and y are vectors and A is an
   31: *  n by n symmetric matrix.
   32: *
   33: *  This function is primarily used in calculating error bounds.
   34: *  To protect against underflow during evaluation, components in
   35: *  the resulting vector are perturbed away from zero by (N+1)
   36: *  times the underflow threshold.  To prevent unnecessarily large
   37: *  errors for block-structure embedded in general matrices,
   38: *  "symbolically" zero components are not perturbed.  A zero
   39: *  entry is considered "symbolic" if all multiplications involved
   40: *  in computing that entry have at least one zero multiplicand.
   41: *
   42: *  Arguments
   43: *  ==========
   44: *
   45: *  UPLO    (input) INTEGER
   46: *           On entry, UPLO specifies whether the upper or lower
   47: *           triangular part of the array A is to be referenced as
   48: *           follows:
   49: *
   50: *              UPLO = BLAS_UPPER   Only the upper triangular part of A
   51: *                                  is to be referenced.
   52: *
   53: *              UPLO = BLAS_LOWER   Only the lower triangular part of A
   54: *                                  is to be referenced.
   55: *
   56: *           Unchanged on exit.
   57: *
   58: *  N       (input) INTEGER
   59: *           On entry, N specifies the number of columns of the matrix A.
   60: *           N must be at least zero.
   61: *           Unchanged on exit.
   62: *
   63: *  ALPHA  - DOUBLE PRECISION   .
   64: *           On entry, ALPHA specifies the scalar alpha.
   65: *           Unchanged on exit.
   66: *
   67: *  A      - COMPLEX*16         array of DIMENSION ( LDA, n ).
   68: *           Before entry, the leading m by n part of the array A must
   69: *           contain the matrix of coefficients.
   70: *           Unchanged on exit.
   71: *
   72: *  LDA     (input) INTEGER
   73: *           On entry, LDA specifies the first dimension of A as declared
   74: *           in the calling (sub) program. LDA must be at least
   75: *           max( 1, n ).
   76: *           Unchanged on exit.
   77: *
   78: *  X      - COMPLEX*16         array of DIMENSION at least
   79: *           ( 1 + ( n - 1 )*abs( INCX ) )
   80: *           Before entry, the incremented array X must contain the
   81: *           vector x.
   82: *           Unchanged on exit.
   83: *
   84: *  INCX    (input) INTEGER
   85: *           On entry, INCX specifies the increment for the elements of
   86: *           X. INCX must not be zero.
   87: *           Unchanged on exit.
   88: *
   89: *  BETA   - DOUBLE PRECISION   .
   90: *           On entry, BETA specifies the scalar beta. When BETA is
   91: *           supplied as zero then Y need not be set on input.
   92: *           Unchanged on exit.
   93: *
   94: *  Y       (input/output) DOUBLE PRECISION  array, dimension
   95: *           ( 1 + ( n - 1 )*abs( INCY ) )
   96: *           Before entry with BETA non-zero, the incremented array Y
   97: *           must contain the vector y. On exit, Y is overwritten by the
   98: *           updated vector y.
   99: *
  100: *  INCY    (input) INTEGER
  101: *           On entry, INCY specifies the increment for the elements of
  102: *           Y. INCY must not be zero.
  103: *           Unchanged on exit.
  104: *
  105: *  Further Details
  106: *  ===============
  107: *
  108: *  Level 2 Blas routine.
  109: *
  110: *  -- Written on 22-October-1986.
  111: *     Jack Dongarra, Argonne National Lab.
  112: *     Jeremy Du Croz, Nag Central Office.
  113: *     Sven Hammarling, Nag Central Office.
  114: *     Richard Hanson, Sandia National Labs.
  115: *  -- Modified for the absolute-value product, April 2006
  116: *     Jason Riedy, UC Berkeley
  117: *
  118: *  =====================================================================
  119: *
  120: *     .. Parameters ..
  121:       DOUBLE PRECISION   ONE, ZERO
  122:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  123: *     ..
  124: *     .. Local Scalars ..
  125:       LOGICAL            SYMB_ZERO
  126:       DOUBLE PRECISION   TEMP, SAFE1
  127:       INTEGER            I, INFO, IY, J, JX, KX, KY
  128:       COMPLEX*16         ZDUM
  129: *     ..
  130: *     .. External Subroutines ..
  131:       EXTERNAL           XERBLA, DLAMCH
  132:       DOUBLE PRECISION   DLAMCH
  133: *     ..
  134: *     .. External Functions ..
  135:       EXTERNAL           ILAUPLO
  136:       INTEGER            ILAUPLO
  137: *     ..
  138: *     .. Intrinsic Functions ..
  139:       INTRINSIC          MAX, ABS, SIGN, REAL, DIMAG
  140: *     ..
  141: *     .. Statement Functions ..
  142:       DOUBLE PRECISION   CABS1
  143: *     ..
  144: *     .. Statement Function Definitions ..
  145:       CABS1( ZDUM ) = ABS( DBLE ( ZDUM ) ) + ABS( DIMAG ( ZDUM ) )
  146: *     ..
  147: *     .. Executable Statements ..
  148: *
  149: *     Test the input parameters.
  150: *
  151:       INFO = 0
  152:       IF     ( UPLO.NE.ILAUPLO( 'U' ) .AND.
  153:      $         UPLO.NE.ILAUPLO( 'L' ) )THEN
  154:          INFO = 1
  155:       ELSE IF( N.LT.0 )THEN
  156:          INFO = 2
  157:       ELSE IF( LDA.LT.MAX( 1, N ) )THEN
  158:          INFO = 5
  159:       ELSE IF( INCX.EQ.0 )THEN
  160:          INFO = 7
  161:       ELSE IF( INCY.EQ.0 )THEN
  162:          INFO = 10
  163:       END IF
  164:       IF( INFO.NE.0 )THEN
  165:          CALL XERBLA( 'ZHEMV ', INFO )
  166:          RETURN
  167:       END IF
  168: *
  169: *     Quick return if possible.
  170: *
  171:       IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  172:      $   RETURN
  173: *
  174: *     Set up the start points in  X  and  Y.
  175: *
  176:       IF( INCX.GT.0 )THEN
  177:          KX = 1
  178:       ELSE
  179:          KX = 1 - ( N - 1 )*INCX
  180:       END IF
  181:       IF( INCY.GT.0 )THEN
  182:          KY = 1
  183:       ELSE
  184:          KY = 1 - ( N - 1 )*INCY
  185:       END IF
  186: *
  187: *     Set SAFE1 essentially to be the underflow threshold times the
  188: *     number of additions in each row.
  189: *
  190:       SAFE1 = DLAMCH( 'Safe minimum' )
  191:       SAFE1 = (N+1)*SAFE1
  192: *
  193: *     Form  y := alpha*abs(A)*abs(x) + beta*abs(y).
  194: *
  195: *     The O(N^2) SYMB_ZERO tests could be replaced by O(N) queries to
  196: *     the inexact flag.  Still doesn't help change the iteration order
  197: *     to per-column.
  198: *
  199:       IY = KY
  200:       IF ( INCX.EQ.1 ) THEN
  201:          IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
  202:             DO I = 1, N
  203:                IF ( BETA .EQ. ZERO ) THEN
  204:                   SYMB_ZERO = .TRUE.
  205:                   Y( IY ) = 0.0D+0
  206:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  207:                   SYMB_ZERO = .TRUE.
  208:                ELSE
  209:                   SYMB_ZERO = .FALSE.
  210:                   Y( IY ) = BETA * ABS( Y( IY ) )
  211:                END IF
  212:                IF ( ALPHA .NE. ZERO ) THEN
  213:                   DO J = 1, I
  214:                      TEMP = CABS1( A( J, I ) )
  215:                      SYMB_ZERO = SYMB_ZERO .AND.
  216:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  217: 
  218:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  219:                   END DO
  220:                   DO J = I+1, N
  221:                      TEMP = CABS1( A( I, J ) )
  222:                      SYMB_ZERO = SYMB_ZERO .AND.
  223:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  224: 
  225:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  226:                   END DO
  227:                END IF
  228: 
  229:                IF (.NOT.SYMB_ZERO)
  230:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  231: 
  232:                IY = IY + INCY
  233:             END DO
  234:          ELSE
  235:             DO I = 1, N
  236:                IF ( BETA .EQ. ZERO ) THEN
  237:                   SYMB_ZERO = .TRUE.
  238:                   Y( IY ) = 0.0D+0
  239:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  240:                   SYMB_ZERO = .TRUE.
  241:                ELSE
  242:                   SYMB_ZERO = .FALSE.
  243:                   Y( IY ) = BETA * ABS( Y( IY ) )
  244:                END IF
  245:                IF ( ALPHA .NE. ZERO ) THEN
  246:                   DO J = 1, I
  247:                      TEMP = CABS1( A( I, J ) )
  248:                      SYMB_ZERO = SYMB_ZERO .AND.
  249:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  250: 
  251:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  252:                   END DO
  253:                   DO J = I+1, N
  254:                      TEMP = CABS1( A( J, I ) )
  255:                      SYMB_ZERO = SYMB_ZERO .AND.
  256:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  257: 
  258:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  259:                   END DO
  260:                END IF
  261: 
  262:                IF (.NOT.SYMB_ZERO)
  263:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  264: 
  265:                IY = IY + INCY
  266:             END DO
  267:          END IF
  268:       ELSE
  269:          IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
  270:             DO I = 1, N
  271:                IF ( BETA .EQ. ZERO ) THEN
  272:                   SYMB_ZERO = .TRUE.
  273:                   Y( IY ) = 0.0D+0
  274:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  275:                   SYMB_ZERO = .TRUE.
  276:                ELSE
  277:                   SYMB_ZERO = .FALSE.
  278:                   Y( IY ) = BETA * ABS( Y( IY ) )
  279:                END IF
  280:                JX = KX
  281:                IF ( ALPHA .NE. ZERO ) THEN
  282:                   DO J = 1, I
  283:                      TEMP = CABS1( A( J, I ) )
  284:                      SYMB_ZERO = SYMB_ZERO .AND.
  285:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  286: 
  287:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  288:                      JX = JX + INCX
  289:                   END DO
  290:                   DO J = I+1, N
  291:                      TEMP = CABS1( A( I, J ) )
  292:                      SYMB_ZERO = SYMB_ZERO .AND.
  293:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  294: 
  295:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  296:                      JX = JX + INCX
  297:                   END DO
  298:                END IF
  299: 
  300:                IF ( .NOT.SYMB_ZERO )
  301:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  302: 
  303:                IY = IY + INCY
  304:             END DO
  305:          ELSE
  306:             DO I = 1, N
  307:                IF ( BETA .EQ. ZERO ) THEN
  308:                   SYMB_ZERO = .TRUE.
  309:                   Y( IY ) = 0.0D+0
  310:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  311:                   SYMB_ZERO = .TRUE.
  312:                ELSE
  313:                   SYMB_ZERO = .FALSE.
  314:                   Y( IY ) = BETA * ABS( Y( IY ) )
  315:                END IF
  316:                JX = KX
  317:                IF ( ALPHA .NE. ZERO ) THEN
  318:                   DO J = 1, I
  319:                      TEMP = CABS1( A( I, J ) )
  320:                      SYMB_ZERO = SYMB_ZERO .AND.
  321:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  322: 
  323:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  324:                      JX = JX + INCX
  325:                   END DO
  326:                   DO J = I+1, N
  327:                      TEMP = CABS1( A( J, I ) )
  328:                      SYMB_ZERO = SYMB_ZERO .AND.
  329:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  330: 
  331:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  332:                      JX = JX + INCX
  333:                   END DO
  334:                END IF
  335: 
  336:                IF ( .NOT.SYMB_ZERO )
  337:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  338: 
  339:                IY = IY + INCY
  340:             END DO
  341:          END IF
  342: 
  343:       END IF
  344: *
  345:       RETURN
  346: *
  347: *     End of ZLA_HEAMV
  348: *
  349:       END

CVSweb interface <joel.bertrand@systella.fr>