File:  [local] / rpl / lapack / lapack / zla_gerfsx_extended.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:21:09 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Ajout des nouveaux fichiers pour Lapack 3.2.2.

    1:       SUBROUTINE ZLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
    2:      $                                LDA, AF, LDAF, IPIV, COLEQU, C, B,
    3:      $                                LDB, Y, LDY, BERR_OUT, N_NORMS,
    4:      $                                ERRS_N, ERRS_C, RES, AYB, DY,
    5:      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
    6:      $                                DZ_UB, IGNORE_CWISE, INFO )
    7: *
    8: *     -- LAPACK routine (version 3.2.1)                                 --
    9: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
   10: *     -- Jason Riedy of Univ. of California Berkeley.                 --
   11: *     -- April 2009                                                   --
   12: *
   13: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   14: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   15: *
   16:       IMPLICIT NONE
   17: *     ..
   18: *     .. Scalar Arguments ..
   19:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
   20:      $                   TRANS_TYPE, N_NORMS
   21:       LOGICAL            COLEQU, IGNORE_CWISE
   22:       INTEGER            ITHRESH
   23:       DOUBLE PRECISION   RTHRESH, DZ_UB
   24: *     ..
   25: *     .. Array Arguments
   26:       INTEGER            IPIV( * )
   27:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   28:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
   29:       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
   30:      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
   31: *     ..
   32: *
   33: *  Purpose
   34: *  =======
   35: *
   36: *  ZLA_GERFSX_EXTENDED improves the computed solution to a system of
   37: *  linear equations by performing extra-precise iterative refinement
   38: *  and provides error bounds and backward error estimates for the solution.
   39: *  This subroutine is called by ZGERFSX to perform iterative refinement.
   40: *  In addition to normwise error bound, the code provides maximum
   41: *  componentwise error bound if possible. See comments for ERR_BNDS_NORM
   42: *  and ERR_BNDS_COMP for details of the error bounds. Note that this
   43: *  subroutine is only resonsible for setting the second fields of
   44: *  ERR_BNDS_NORM and ERR_BNDS_COMP.
   45: *
   46: *  Arguments
   47: *  =========
   48: *
   49: *     PREC_TYPE      (input) INTEGER
   50: *     Specifies the intermediate precision to be used in refinement.
   51: *     The value is defined by ILAPREC(P) where P is a CHARACTER and
   52: *     P    = 'S':  Single
   53: *          = 'D':  Double
   54: *          = 'I':  Indigenous
   55: *          = 'X', 'E':  Extra
   56: *
   57: *     TRANS_TYPE     (input) INTEGER
   58: *     Specifies the transposition operation on A.
   59: *     The value is defined by ILATRANS(T) where T is a CHARACTER and
   60: *     T    = 'N':  No transpose
   61: *          = 'T':  Transpose
   62: *          = 'C':  Conjugate transpose
   63: *
   64: *     N              (input) INTEGER
   65: *     The number of linear equations, i.e., the order of the
   66: *     matrix A.  N >= 0.
   67: *
   68: *     NRHS           (input) INTEGER
   69: *     The number of right-hand-sides, i.e., the number of columns of the
   70: *     matrix B.
   71: *
   72: *     A              (input) COMPLEX*16 array, dimension (LDA,N)
   73: *     On entry, the N-by-N matrix A.
   74: *
   75: *     LDA            (input) INTEGER
   76: *     The leading dimension of the array A.  LDA >= max(1,N).
   77: *
   78: *     AF             (input) COMPLEX*16 array, dimension (LDAF,N)
   79: *     The factors L and U from the factorization
   80: *     A = P*L*U as computed by ZGETRF.
   81: *
   82: *     LDAF           (input) INTEGER
   83: *     The leading dimension of the array AF.  LDAF >= max(1,N).
   84: *
   85: *     IPIV           (input) INTEGER array, dimension (N)
   86: *     The pivot indices from the factorization A = P*L*U
   87: *     as computed by ZGETRF; row i of the matrix was interchanged
   88: *     with row IPIV(i).
   89: *
   90: *     COLEQU         (input) LOGICAL
   91: *     If .TRUE. then column equilibration was done to A before calling
   92: *     this routine. This is needed to compute the solution and error
   93: *     bounds correctly.
   94: *
   95: *     C              (input) DOUBLE PRECISION array, dimension (N)
   96: *     The column scale factors for A. If COLEQU = .FALSE., C
   97: *     is not accessed. If C is input, each element of C should be a power
   98: *     of the radix to ensure a reliable solution and error estimates.
   99: *     Scaling by powers of the radix does not cause rounding errors unless
  100: *     the result underflows or overflows. Rounding errors during scaling
  101: *     lead to refining with a matrix that is not equivalent to the
  102: *     input matrix, producing error estimates that may not be
  103: *     reliable.
  104: *
  105: *     B              (input) COMPLEX*16 array, dimension (LDB,NRHS)
  106: *     The right-hand-side matrix B.
  107: *
  108: *     LDB            (input) INTEGER
  109: *     The leading dimension of the array B.  LDB >= max(1,N).
  110: *
  111: *     Y              (input/output) COMPLEX*16 array, dimension (LDY,NRHS)
  112: *     On entry, the solution matrix X, as computed by ZGETRS.
  113: *     On exit, the improved solution matrix Y.
  114: *
  115: *     LDY            (input) INTEGER
  116: *     The leading dimension of the array Y.  LDY >= max(1,N).
  117: *
  118: *     BERR_OUT       (output) DOUBLE PRECISION array, dimension (NRHS)
  119: *     On exit, BERR_OUT(j) contains the componentwise relative backward
  120: *     error for right-hand-side j from the formula
  121: *         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  122: *     where abs(Z) is the componentwise absolute value of the matrix
  123: *     or vector Z. This is computed by ZLA_LIN_BERR.
  124: *
  125: *     N_NORMS        (input) INTEGER
  126: *     Determines which error bounds to return (see ERR_BNDS_NORM
  127: *     and ERR_BNDS_COMP).
  128: *     If N_NORMS >= 1 return normwise error bounds.
  129: *     If N_NORMS >= 2 return componentwise error bounds.
  130: *
  131: *     ERR_BNDS_NORM  (input/output) DOUBLE PRECISION array, dimension
  132: *                    (NRHS, N_ERR_BNDS)
  133: *     For each right-hand side, this array contains information about
  134: *     various error bounds and condition numbers corresponding to the
  135: *     normwise relative error, which is defined as follows:
  136: *
  137: *     Normwise relative error in the ith solution vector:
  138: *             max_j (abs(XTRUE(j,i) - X(j,i)))
  139: *            ------------------------------
  140: *                  max_j abs(X(j,i))
  141: *
  142: *     The array is indexed by the type of error information as described
  143: *     below. There currently are up to three pieces of information
  144: *     returned.
  145: *
  146: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  147: *     right-hand side.
  148: *
  149: *     The second index in ERR_BNDS_NORM(:,err) contains the following
  150: *     three fields:
  151: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  152: *              reciprocal condition number is less than the threshold
  153: *              sqrt(n) * slamch('Epsilon').
  154: *
  155: *     err = 2 "Guaranteed" error bound: The estimated forward error,
  156: *              almost certainly within a factor of 10 of the true error
  157: *              so long as the next entry is greater than the threshold
  158: *              sqrt(n) * slamch('Epsilon'). This error bound should only
  159: *              be trusted if the previous boolean is true.
  160: *
  161: *     err = 3  Reciprocal condition number: Estimated normwise
  162: *              reciprocal condition number.  Compared with the threshold
  163: *              sqrt(n) * slamch('Epsilon') to determine if the error
  164: *              estimate is "guaranteed". These reciprocal condition
  165: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  166: *              appropriately scaled matrix Z.
  167: *              Let Z = S*A, where S scales each row by a power of the
  168: *              radix so all absolute row sums of Z are approximately 1.
  169: *
  170: *     This subroutine is only responsible for setting the second field
  171: *     above.
  172: *     See Lapack Working Note 165 for further details and extra
  173: *     cautions.
  174: *
  175: *     ERR_BNDS_COMP  (input/output) DOUBLE PRECISION array, dimension
  176: *                    (NRHS, N_ERR_BNDS)
  177: *     For each right-hand side, this array contains information about
  178: *     various error bounds and condition numbers corresponding to the
  179: *     componentwise relative error, which is defined as follows:
  180: *
  181: *     Componentwise relative error in the ith solution vector:
  182: *                    abs(XTRUE(j,i) - X(j,i))
  183: *             max_j ----------------------
  184: *                         abs(X(j,i))
  185: *
  186: *     The array is indexed by the right-hand side i (on which the
  187: *     componentwise relative error depends), and the type of error
  188: *     information as described below. There currently are up to three
  189: *     pieces of information returned for each right-hand side. If
  190: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  191: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
  192: *     the first (:,N_ERR_BNDS) entries are returned.
  193: *
  194: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  195: *     right-hand side.
  196: *
  197: *     The second index in ERR_BNDS_COMP(:,err) contains the following
  198: *     three fields:
  199: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  200: *              reciprocal condition number is less than the threshold
  201: *              sqrt(n) * slamch('Epsilon').
  202: *
  203: *     err = 2 "Guaranteed" error bound: The estimated forward error,
  204: *              almost certainly within a factor of 10 of the true error
  205: *              so long as the next entry is greater than the threshold
  206: *              sqrt(n) * slamch('Epsilon'). This error bound should only
  207: *              be trusted if the previous boolean is true.
  208: *
  209: *     err = 3  Reciprocal condition number: Estimated componentwise
  210: *              reciprocal condition number.  Compared with the threshold
  211: *              sqrt(n) * slamch('Epsilon') to determine if the error
  212: *              estimate is "guaranteed". These reciprocal condition
  213: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  214: *              appropriately scaled matrix Z.
  215: *              Let Z = S*(A*diag(x)), where x is the solution for the
  216: *              current right-hand side and S scales each row of
  217: *              A*diag(x) by a power of the radix so all absolute row
  218: *              sums of Z are approximately 1.
  219: *
  220: *     This subroutine is only responsible for setting the second field
  221: *     above.
  222: *     See Lapack Working Note 165 for further details and extra
  223: *     cautions.
  224: *
  225: *     RES            (input) COMPLEX*16 array, dimension (N)
  226: *     Workspace to hold the intermediate residual.
  227: *
  228: *     AYB            (input) DOUBLE PRECISION array, dimension (N)
  229: *     Workspace.
  230: *
  231: *     DY             (input) COMPLEX*16 array, dimension (N)
  232: *     Workspace to hold the intermediate solution.
  233: *
  234: *     Y_TAIL         (input) COMPLEX*16 array, dimension (N)
  235: *     Workspace to hold the trailing bits of the intermediate solution.
  236: *
  237: *     RCOND          (input) DOUBLE PRECISION
  238: *     Reciprocal scaled condition number.  This is an estimate of the
  239: *     reciprocal Skeel condition number of the matrix A after
  240: *     equilibration (if done).  If this is less than the machine
  241: *     precision (in particular, if it is zero), the matrix is singular
  242: *     to working precision.  Note that the error may still be small even
  243: *     if this number is very small and the matrix appears ill-
  244: *     conditioned.
  245: *
  246: *     ITHRESH        (input) INTEGER
  247: *     The maximum number of residual computations allowed for
  248: *     refinement. The default is 10. For 'aggressive' set to 100 to
  249: *     permit convergence using approximate factorizations or
  250: *     factorizations other than LU. If the factorization uses a
  251: *     technique other than Gaussian elimination, the guarantees in
  252: *     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
  253: *
  254: *     RTHRESH        (input) DOUBLE PRECISION
  255: *     Determines when to stop refinement if the error estimate stops
  256: *     decreasing. Refinement will stop when the next solution no longer
  257: *     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  258: *     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  259: *     default value is 0.5. For 'aggressive' set to 0.9 to permit
  260: *     convergence on extremely ill-conditioned matrices. See LAWN 165
  261: *     for more details.
  262: *
  263: *     DZ_UB          (input) DOUBLE PRECISION
  264: *     Determines when to start considering componentwise convergence.
  265: *     Componentwise convergence is only considered after each component
  266: *     of the solution Y is stable, which we definte as the relative
  267: *     change in each component being less than DZ_UB. The default value
  268: *     is 0.25, requiring the first bit to be stable. See LAWN 165 for
  269: *     more details.
  270: *
  271: *     IGNORE_CWISE   (input) LOGICAL
  272: *     If .TRUE. then ignore componentwise convergence. Default value
  273: *     is .FALSE..
  274: *
  275: *     INFO           (output) INTEGER
  276: *       = 0:  Successful exit.
  277: *       < 0:  if INFO = -i, the ith argument to ZGETRS had an illegal
  278: *             value
  279: *
  280: *  =====================================================================
  281: *
  282: *     .. Local Scalars ..
  283:       CHARACTER          TRANS
  284:       INTEGER            CNT, I, J,  X_STATE, Z_STATE, Y_PREC_STATE
  285:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  286:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  287:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  288:      $                   EPS, HUGEVAL, INCR_THRESH
  289:       LOGICAL            INCR_PREC
  290:       COMPLEX*16         ZDUM
  291: *     ..
  292: *     .. Parameters ..
  293:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  294:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
  295:      $                   EXTRA_Y
  296:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  297:      $                   CONV_STATE = 2,
  298:      $                   NOPROG_STATE = 3 )
  299:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  300:      $                   EXTRA_Y = 2 )
  301:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  302:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  303:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  304:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  305:      $                   BERR_I = 3 )
  306:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  307:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  308:      $                   PIV_GROWTH_I = 9 )
  309:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  310:      $                   LA_LINRX_CWISE_I
  311:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  312:      $                   LA_LINRX_ITHRESH_I = 2 )
  313:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  314:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  315:      $                   LA_LINRX_RCOND_I
  316:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  317:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  318: *     ..
  319: *     .. External Subroutines ..
  320:       EXTERNAL           ZAXPY, ZCOPY, ZGETRS, ZGEMV, BLAS_ZGEMV_X,
  321:      $                   BLAS_ZGEMV2_X, ZLA_GEAMV, ZLA_WWADDW, DLAMCH,
  322:      $                   CHLA_TRANSTYPE, ZLA_LIN_BERR
  323:       DOUBLE PRECISION   DLAMCH
  324:       CHARACTER          CHLA_TRANSTYPE
  325: *     ..
  326: *     .. Intrinsic Functions ..
  327:       INTRINSIC          ABS, MAX, MIN
  328: *     ..
  329: *     .. Statement Functions ..
  330:       DOUBLE PRECISION   CABS1
  331: *     ..
  332: *     .. Statement Function Definitions ..
  333:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  334: *     ..
  335: *     .. Executable Statements ..
  336: *
  337:       IF ( INFO.NE.0 ) RETURN
  338:       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
  339:       EPS = DLAMCH( 'Epsilon' )
  340:       HUGEVAL = DLAMCH( 'Overflow' )
  341: *     Force HUGEVAL to Inf
  342:       HUGEVAL = HUGEVAL * HUGEVAL
  343: *     Using HUGEVAL may lead to spurious underflows.
  344:       INCR_THRESH = DBLE( N ) * EPS
  345: *
  346:       DO J = 1, NRHS
  347:          Y_PREC_STATE = EXTRA_RESIDUAL
  348:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  349:             DO I = 1, N
  350:                Y_TAIL( I ) = 0.0D+0
  351:             END DO
  352:          END IF
  353: 
  354:          DXRAT = 0.0D+0
  355:          DXRATMAX = 0.0D+0
  356:          DZRAT = 0.0D+0
  357:          DZRATMAX = 0.0D+0
  358:          FINAL_DX_X = HUGEVAL
  359:          FINAL_DZ_Z = HUGEVAL
  360:          PREVNORMDX = HUGEVAL
  361:          PREV_DZ_Z = HUGEVAL
  362:          DZ_Z = HUGEVAL
  363:          DX_X = HUGEVAL
  364: 
  365:          X_STATE = WORKING_STATE
  366:          Z_STATE = UNSTABLE_STATE
  367:          INCR_PREC = .FALSE.
  368: 
  369:          DO CNT = 1, ITHRESH
  370: *
  371: *         Compute residual RES = B_s - op(A_s) * Y,
  372: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
  373: *
  374:             CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
  375:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
  376:                CALL ZGEMV( TRANS, N, N, (-1.0D+0,0.0D+0), A, LDA,
  377:      $              Y( 1, J ), 1, (1.0D+0,0.0D+0), RES, 1)
  378:             ELSE IF (Y_PREC_STATE .EQ. EXTRA_RESIDUAL) THEN
  379:                CALL BLAS_ZGEMV_X( TRANS_TYPE, N, N, (-1.0D+0,0.0D+0), A,
  380:      $              LDA, Y( 1, J ), 1, (1.0D+0,0.0D+0),
  381:      $              RES, 1, PREC_TYPE )
  382:             ELSE
  383:                CALL BLAS_ZGEMV2_X( TRANS_TYPE, N, N, (-1.0D+0,0.0D+0),
  384:      $              A, LDA, Y(1, J), Y_TAIL, 1, (1.0D+0,0.0D+0), RES, 1,
  385:      $              PREC_TYPE)
  386:             END IF
  387: 
  388: !         XXX: RES is no longer needed.
  389:             CALL ZCOPY( N, RES, 1, DY, 1 )
  390:             CALL ZGETRS( TRANS, N, 1, AF, LDAF, IPIV, DY, N, INFO )
  391: *
  392: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  393: *
  394:             NORMX = 0.0D+0
  395:             NORMY = 0.0D+0
  396:             NORMDX = 0.0D+0
  397:             DZ_Z = 0.0D+0
  398:             YMIN = HUGEVAL
  399: *
  400:             DO I = 1, N
  401:                YK = CABS1( Y( I, J ) )
  402:                DYK = CABS1( DY( I ) )
  403: 
  404:                IF ( YK .NE. 0.0D+0 ) THEN
  405:                   DZ_Z = MAX( DZ_Z, DYK / YK )
  406:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  407:                   DZ_Z = HUGEVAL
  408:                END IF
  409: 
  410:                YMIN = MIN( YMIN, YK )
  411: 
  412:                NORMY = MAX( NORMY, YK )
  413: 
  414:                IF ( COLEQU ) THEN
  415:                   NORMX = MAX( NORMX, YK * C( I ) )
  416:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
  417:                ELSE
  418:                   NORMX = NORMY
  419:                   NORMDX = MAX(NORMDX, DYK)
  420:                END IF
  421:             END DO
  422: 
  423:             IF ( NORMX .NE. 0.0D+0 ) THEN
  424:                DX_X = NORMDX / NORMX
  425:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  426:                DX_X = 0.0D+0
  427:             ELSE
  428:                DX_X = HUGEVAL
  429:             END IF
  430: 
  431:             DXRAT = NORMDX / PREVNORMDX
  432:             DZRAT = DZ_Z / PREV_DZ_Z
  433: *
  434: *         Check termination criteria
  435: *
  436:             IF (.NOT.IGNORE_CWISE
  437:      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
  438:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
  439:      $           INCR_PREC = .TRUE.
  440: 
  441:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  442:      $           X_STATE = WORKING_STATE
  443:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
  444:                IF (DX_X .LE. EPS) THEN
  445:                   X_STATE = CONV_STATE
  446:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  447:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  448:                      INCR_PREC = .TRUE.
  449:                   ELSE
  450:                      X_STATE = NOPROG_STATE
  451:                   END IF
  452:                ELSE
  453:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
  454:                END IF
  455:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  456:             END IF
  457: 
  458:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  459:      $           Z_STATE = WORKING_STATE
  460:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  461:      $           Z_STATE = WORKING_STATE
  462:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  463:                IF ( DZ_Z .LE. EPS ) THEN
  464:                   Z_STATE = CONV_STATE
  465:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  466:                   Z_STATE = UNSTABLE_STATE
  467:                   DZRATMAX = 0.0D+0
  468:                   FINAL_DZ_Z = HUGEVAL
  469:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  470:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  471:                      INCR_PREC = .TRUE.
  472:                   ELSE
  473:                      Z_STATE = NOPROG_STATE
  474:                   END IF
  475:                ELSE
  476:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  477:                END IF
  478:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  479:             END IF
  480: *
  481: *           Exit if both normwise and componentwise stopped working,
  482: *           but if componentwise is unstable, let it go at least two
  483: *           iterations.
  484: *
  485:             IF ( X_STATE.NE.WORKING_STATE ) THEN
  486:                IF ( IGNORE_CWISE ) GOTO 666
  487:                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
  488:      $              GOTO 666
  489:                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
  490:             END IF
  491: 
  492:             IF ( INCR_PREC ) THEN
  493:                INCR_PREC = .FALSE.
  494:                Y_PREC_STATE = Y_PREC_STATE + 1
  495:                DO I = 1, N
  496:                   Y_TAIL( I ) = 0.0D+0
  497:                END DO
  498:             END IF
  499: 
  500:             PREVNORMDX = NORMDX
  501:             PREV_DZ_Z = DZ_Z
  502: *
  503: *           Update soluton.
  504: *
  505:             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
  506:                CALL ZAXPY( N, (1.0D+0,0.0D+0), DY, 1, Y(1,J), 1 )
  507:             ELSE
  508:                CALL ZLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
  509:             END IF
  510: 
  511:          END DO
  512: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
  513:  666     CONTINUE
  514: *
  515: *     Set final_* when cnt hits ithresh
  516: *
  517:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  518:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  519: *
  520: *     Compute error bounds
  521: *
  522:          IF (N_NORMS .GE. 1) THEN
  523:             ERRS_N( J, LA_LINRX_ERR_I ) = FINAL_DX_X / (1 - DXRATMAX)
  524: 
  525:          END IF
  526:          IF ( N_NORMS .GE. 2 ) THEN
  527:             ERRS_C( J, LA_LINRX_ERR_I ) = FINAL_DZ_Z / (1 - DZRATMAX)
  528:          END IF
  529: *
  530: *     Compute componentwise relative backward error from formula
  531: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  532: *     where abs(Z) is the componentwise absolute value of the matrix
  533: *     or vector Z.
  534: *
  535: *        Compute residual RES = B_s - op(A_s) * Y,
  536: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
  537: *
  538:          CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
  539:          CALL ZGEMV( TRANS, N, N, (-1.0D+0,0.0D+0), A, LDA, Y(1,J), 1,
  540:      $        (1.0D+0,0.0D+0), RES, 1 )
  541: 
  542:          DO I = 1, N
  543:             AYB( I ) = CABS1( B( I, J ) )
  544:          END DO
  545: *
  546: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
  547: *
  548:          CALL ZLA_GEAMV ( TRANS_TYPE, N, N, 1.0D+0,
  549:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
  550: 
  551:          CALL ZLA_LIN_BERR ( N, N, 1, RES, AYB, BERR_OUT( J ) )
  552: *
  553: *     End of loop for each RHS.
  554: *
  555:       END DO
  556: *
  557:       RETURN
  558:       END

CVSweb interface <joel.bertrand@systella.fr>