File:  [local] / rpl / lapack / lapack / zla_gercond_x.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:48 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       DOUBLE PRECISION FUNCTION ZLA_GERCOND_X( TRANS, N, A, LDA, AF,
    2:      $                                         LDAF, IPIV, X, INFO,
    3:      $                                         WORK, RWORK )
    4: *
    5: *     -- LAPACK routine (version 3.2.1)                                 --
    6: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    7: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    8: *     -- April 2009                                                   --
    9: *
   10: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   11: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   12: *
   13:       IMPLICIT NONE
   14: *     ..
   15: *     .. Scalar Arguments ..
   16:       CHARACTER          TRANS
   17:       INTEGER            N, LDA, LDAF, INFO
   18: *     ..
   19: *     .. Array Arguments ..
   20:       INTEGER            IPIV( * )
   21:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
   22:       DOUBLE PRECISION   RWORK( * )
   23: *     ..
   24: *
   25: *  Purpose
   26: *  =======
   27: *
   28: *     ZLA_GERCOND_X computes the infinity norm condition number of
   29: *     op(A) * diag(X) where X is a COMPLEX*16 vector.
   30: *
   31: *  Arguments
   32: *  =========
   33: *
   34: *     TRANS   (input) CHARACTER*1
   35: *     Specifies the form of the system of equations:
   36: *       = 'N':  A * X = B     (No transpose)
   37: *       = 'T':  A**T * X = B  (Transpose)
   38: *       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
   39: *
   40: *     N       (input) INTEGER
   41: *     The number of linear equations, i.e., the order of the
   42: *     matrix A.  N >= 0.
   43: *
   44: *     A       (input) COMPLEX*16 array, dimension (LDA,N)
   45: *     On entry, the N-by-N matrix A.
   46: *
   47: *     LDA     (input) INTEGER
   48: *     The leading dimension of the array A.  LDA >= max(1,N).
   49: *
   50: *     AF      (input) COMPLEX*16 array, dimension (LDAF,N)
   51: *     The factors L and U from the factorization
   52: *     A = P*L*U as computed by ZGETRF.
   53: *
   54: *     LDAF    (input) INTEGER
   55: *     The leading dimension of the array AF.  LDAF >= max(1,N).
   56: *
   57: *     IPIV    (input) INTEGER array, dimension (N)
   58: *     The pivot indices from the factorization A = P*L*U
   59: *     as computed by ZGETRF; row i of the matrix was interchanged
   60: *     with row IPIV(i).
   61: *
   62: *     X       (input) COMPLEX*16 array, dimension (N)
   63: *     The vector X in the formula op(A) * diag(X).
   64: *
   65: *     INFO    (output) INTEGER
   66: *       = 0:  Successful exit.
   67: *     i > 0:  The ith argument is invalid.
   68: *
   69: *     WORK    (input) COMPLEX*16 array, dimension (2*N).
   70: *     Workspace.
   71: *
   72: *     RWORK   (input) DOUBLE PRECISION array, dimension (N).
   73: *     Workspace.
   74: *
   75: *  =====================================================================
   76: *
   77: *     .. Local Scalars ..
   78:       LOGICAL            NOTRANS
   79:       INTEGER            KASE
   80:       DOUBLE PRECISION   AINVNM, ANORM, TMP
   81:       INTEGER            I, J
   82:       COMPLEX*16         ZDUM
   83: *     ..
   84: *     .. Local Arrays ..
   85:       INTEGER            ISAVE( 3 )
   86: *     ..
   87: *     .. External Functions ..
   88:       LOGICAL            LSAME
   89:       EXTERNAL           LSAME
   90: *     ..
   91: *     .. External Subroutines ..
   92:       EXTERNAL           ZLACN2, ZGETRS, XERBLA
   93: *     ..
   94: *     .. Intrinsic Functions ..
   95:       INTRINSIC          ABS, MAX, REAL, DIMAG
   96: *     ..
   97: *     .. Statement Functions ..
   98:       DOUBLE PRECISION   CABS1
   99: *     ..
  100: *     .. Statement Function Definitions ..
  101:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  102: *     ..
  103: *     .. Executable Statements ..
  104: *
  105:       ZLA_GERCOND_X = 0.0D+0
  106: *
  107:       INFO = 0
  108:       NOTRANS = LSAME( TRANS, 'N' )
  109:       IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT.
  110:      $     LSAME( TRANS, 'C' ) ) THEN
  111:          INFO = -1
  112:       ELSE IF( N.LT.0 ) THEN
  113:          INFO = -2
  114:       END IF
  115:       IF( INFO.NE.0 ) THEN
  116:          CALL XERBLA( 'ZLA_GERCOND_X', -INFO )
  117:          RETURN
  118:       END IF
  119: *
  120: *     Compute norm of op(A)*op2(C).
  121: *
  122:       ANORM = 0.0D+0
  123:       IF ( NOTRANS ) THEN
  124:          DO I = 1, N
  125:             TMP = 0.0D+0
  126:             DO J = 1, N
  127:                TMP = TMP + CABS1( A( I, J ) * X( J ) )
  128:             END DO
  129:             RWORK( I ) = TMP
  130:             ANORM = MAX( ANORM, TMP )
  131:          END DO
  132:       ELSE
  133:          DO I = 1, N
  134:             TMP = 0.0D+0
  135:             DO J = 1, N
  136:                TMP = TMP + CABS1( A( J, I ) * X( J ) )
  137:             END DO
  138:             RWORK( I ) = TMP
  139:             ANORM = MAX( ANORM, TMP )
  140:          END DO
  141:       END IF
  142: *
  143: *     Quick return if possible.
  144: *
  145:       IF( N.EQ.0 ) THEN
  146:          ZLA_GERCOND_X = 1.0D+0
  147:          RETURN
  148:       ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
  149:          RETURN
  150:       END IF
  151: *
  152: *     Estimate the norm of inv(op(A)).
  153: *
  154:       AINVNM = 0.0D+0
  155: *
  156:       KASE = 0
  157:    10 CONTINUE
  158:       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  159:       IF( KASE.NE.0 ) THEN
  160:          IF( KASE.EQ.2 ) THEN
  161: *           Multiply by R.
  162:             DO I = 1, N
  163:                WORK( I ) = WORK( I ) * RWORK( I )
  164:             END DO
  165: *
  166:             IF ( NOTRANS ) THEN
  167:                CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  168:      $            WORK, N, INFO )
  169:             ELSE
  170:                CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
  171:      $            WORK, N, INFO )
  172:             ENDIF
  173: *
  174: *           Multiply by inv(X).
  175: *
  176:             DO I = 1, N
  177:                WORK( I ) = WORK( I ) / X( I )
  178:             END DO
  179:          ELSE
  180: *
  181: *           Multiply by inv(X').
  182: *
  183:             DO I = 1, N
  184:                WORK( I ) = WORK( I ) / X( I )
  185:             END DO
  186: *
  187:             IF ( NOTRANS ) THEN
  188:                CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
  189:      $            WORK, N, INFO )
  190:             ELSE
  191:                CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  192:      $            WORK, N, INFO )
  193:             END IF
  194: *
  195: *           Multiply by R.
  196: *
  197:             DO I = 1, N
  198:                WORK( I ) = WORK( I ) * RWORK( I )
  199:             END DO
  200:          END IF
  201:          GO TO 10
  202:       END IF
  203: *
  204: *     Compute the estimate of the reciprocal condition number.
  205: *
  206:       IF( AINVNM .NE. 0.0D+0 )
  207:      $   ZLA_GERCOND_X = 1.0D+0 / AINVNM
  208: *
  209:       RETURN
  210: *
  211:       END

CVSweb interface <joel.bertrand@systella.fr>