File:  [local] / rpl / lapack / lapack / zla_gercond_x.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:27 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLA_GERCOND_X computes the infinity norm condition number of op(A)*diag(x) for general matrices.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLA_GERCOND_X + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gercond_x.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gercond_x.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gercond_x.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION ZLA_GERCOND_X( TRANS, N, A, LDA, AF,
   22: *                                                LDAF, IPIV, X, INFO,
   23: *                                                WORK, RWORK )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          TRANS
   27: *       INTEGER            N, LDA, LDAF, INFO
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       INTEGER            IPIV( * )
   31: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
   32: *       DOUBLE PRECISION   RWORK( * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *>    ZLA_GERCOND_X computes the infinity norm condition number of
   42: *>    op(A) * diag(X) where X is a COMPLEX*16 vector.
   43: *> \endverbatim
   44: *
   45: *  Arguments:
   46: *  ==========
   47: *
   48: *> \param[in] TRANS
   49: *> \verbatim
   50: *>          TRANS is CHARACTER*1
   51: *>     Specifies the form of the system of equations:
   52: *>       = 'N':  A * X = B     (No transpose)
   53: *>       = 'T':  A**T * X = B  (Transpose)
   54: *>       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
   55: *> \endverbatim
   56: *>
   57: *> \param[in] N
   58: *> \verbatim
   59: *>          N is INTEGER
   60: *>     The number of linear equations, i.e., the order of the
   61: *>     matrix A.  N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] A
   65: *> \verbatim
   66: *>          A is COMPLEX*16 array, dimension (LDA,N)
   67: *>     On entry, the N-by-N matrix A.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] LDA
   71: *> \verbatim
   72: *>          LDA is INTEGER
   73: *>     The leading dimension of the array A.  LDA >= max(1,N).
   74: *> \endverbatim
   75: *>
   76: *> \param[in] AF
   77: *> \verbatim
   78: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
   79: *>     The factors L and U from the factorization
   80: *>     A = P*L*U as computed by ZGETRF.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] LDAF
   84: *> \verbatim
   85: *>          LDAF is INTEGER
   86: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
   87: *> \endverbatim
   88: *>
   89: *> \param[in] IPIV
   90: *> \verbatim
   91: *>          IPIV is INTEGER array, dimension (N)
   92: *>     The pivot indices from the factorization A = P*L*U
   93: *>     as computed by ZGETRF; row i of the matrix was interchanged
   94: *>     with row IPIV(i).
   95: *> \endverbatim
   96: *>
   97: *> \param[in] X
   98: *> \verbatim
   99: *>          X is COMPLEX*16 array, dimension (N)
  100: *>     The vector X in the formula op(A) * diag(X).
  101: *> \endverbatim
  102: *>
  103: *> \param[out] INFO
  104: *> \verbatim
  105: *>          INFO is INTEGER
  106: *>       = 0:  Successful exit.
  107: *>     i > 0:  The ith argument is invalid.
  108: *> \endverbatim
  109: *>
  110: *> \param[out] WORK
  111: *> \verbatim
  112: *>          WORK is COMPLEX*16 array, dimension (2*N).
  113: *>     Workspace.
  114: *> \endverbatim
  115: *>
  116: *> \param[out] RWORK
  117: *> \verbatim
  118: *>          RWORK is DOUBLE PRECISION array, dimension (N).
  119: *>     Workspace.
  120: *> \endverbatim
  121: *
  122: *  Authors:
  123: *  ========
  124: *
  125: *> \author Univ. of Tennessee
  126: *> \author Univ. of California Berkeley
  127: *> \author Univ. of Colorado Denver
  128: *> \author NAG Ltd.
  129: *
  130: *> \ingroup complex16GEcomputational
  131: *
  132: *  =====================================================================
  133:       DOUBLE PRECISION FUNCTION ZLA_GERCOND_X( TRANS, N, A, LDA, AF,
  134:      $                                         LDAF, IPIV, X, INFO,
  135:      $                                         WORK, RWORK )
  136: *
  137: *  -- LAPACK computational routine --
  138: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  139: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  140: *
  141: *     .. Scalar Arguments ..
  142:       CHARACTER          TRANS
  143:       INTEGER            N, LDA, LDAF, INFO
  144: *     ..
  145: *     .. Array Arguments ..
  146:       INTEGER            IPIV( * )
  147:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
  148:       DOUBLE PRECISION   RWORK( * )
  149: *     ..
  150: *
  151: *  =====================================================================
  152: *
  153: *     .. Local Scalars ..
  154:       LOGICAL            NOTRANS
  155:       INTEGER            KASE
  156:       DOUBLE PRECISION   AINVNM, ANORM, TMP
  157:       INTEGER            I, J
  158:       COMPLEX*16         ZDUM
  159: *     ..
  160: *     .. Local Arrays ..
  161:       INTEGER            ISAVE( 3 )
  162: *     ..
  163: *     .. External Functions ..
  164:       LOGICAL            LSAME
  165:       EXTERNAL           LSAME
  166: *     ..
  167: *     .. External Subroutines ..
  168:       EXTERNAL           ZLACN2, ZGETRS, XERBLA
  169: *     ..
  170: *     .. Intrinsic Functions ..
  171:       INTRINSIC          ABS, MAX, REAL, DIMAG
  172: *     ..
  173: *     .. Statement Functions ..
  174:       DOUBLE PRECISION   CABS1
  175: *     ..
  176: *     .. Statement Function Definitions ..
  177:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  178: *     ..
  179: *     .. Executable Statements ..
  180: *
  181:       ZLA_GERCOND_X = 0.0D+0
  182: *
  183:       INFO = 0
  184:       NOTRANS = LSAME( TRANS, 'N' )
  185:       IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT.
  186:      $     LSAME( TRANS, 'C' ) ) THEN
  187:          INFO = -1
  188:       ELSE IF( N.LT.0 ) THEN
  189:          INFO = -2
  190:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  191:          INFO = -4
  192:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  193:          INFO = -6
  194:       END IF
  195:       IF( INFO.NE.0 ) THEN
  196:          CALL XERBLA( 'ZLA_GERCOND_X', -INFO )
  197:          RETURN
  198:       END IF
  199: *
  200: *     Compute norm of op(A)*op2(C).
  201: *
  202:       ANORM = 0.0D+0
  203:       IF ( NOTRANS ) THEN
  204:          DO I = 1, N
  205:             TMP = 0.0D+0
  206:             DO J = 1, N
  207:                TMP = TMP + CABS1( A( I, J ) * X( J ) )
  208:             END DO
  209:             RWORK( I ) = TMP
  210:             ANORM = MAX( ANORM, TMP )
  211:          END DO
  212:       ELSE
  213:          DO I = 1, N
  214:             TMP = 0.0D+0
  215:             DO J = 1, N
  216:                TMP = TMP + CABS1( A( J, I ) * X( J ) )
  217:             END DO
  218:             RWORK( I ) = TMP
  219:             ANORM = MAX( ANORM, TMP )
  220:          END DO
  221:       END IF
  222: *
  223: *     Quick return if possible.
  224: *
  225:       IF( N.EQ.0 ) THEN
  226:          ZLA_GERCOND_X = 1.0D+0
  227:          RETURN
  228:       ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
  229:          RETURN
  230:       END IF
  231: *
  232: *     Estimate the norm of inv(op(A)).
  233: *
  234:       AINVNM = 0.0D+0
  235: *
  236:       KASE = 0
  237:    10 CONTINUE
  238:       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  239:       IF( KASE.NE.0 ) THEN
  240:          IF( KASE.EQ.2 ) THEN
  241: *           Multiply by R.
  242:             DO I = 1, N
  243:                WORK( I ) = WORK( I ) * RWORK( I )
  244:             END DO
  245: *
  246:             IF ( NOTRANS ) THEN
  247:                CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  248:      $            WORK, N, INFO )
  249:             ELSE
  250:                CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
  251:      $            WORK, N, INFO )
  252:             ENDIF
  253: *
  254: *           Multiply by inv(X).
  255: *
  256:             DO I = 1, N
  257:                WORK( I ) = WORK( I ) / X( I )
  258:             END DO
  259:          ELSE
  260: *
  261: *           Multiply by inv(X**H).
  262: *
  263:             DO I = 1, N
  264:                WORK( I ) = WORK( I ) / X( I )
  265:             END DO
  266: *
  267:             IF ( NOTRANS ) THEN
  268:                CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
  269:      $            WORK, N, INFO )
  270:             ELSE
  271:                CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  272:      $            WORK, N, INFO )
  273:             END IF
  274: *
  275: *           Multiply by R.
  276: *
  277:             DO I = 1, N
  278:                WORK( I ) = WORK( I ) * RWORK( I )
  279:             END DO
  280:          END IF
  281:          GO TO 10
  282:       END IF
  283: *
  284: *     Compute the estimate of the reciprocal condition number.
  285: *
  286:       IF( AINVNM .NE. 0.0D+0 )
  287:      $   ZLA_GERCOND_X = 1.0D+0 / AINVNM
  288: *
  289:       RETURN
  290: *
  291: *     End of ZLA_GERCOND_X
  292: *
  293:       END

CVSweb interface <joel.bertrand@systella.fr>