File:  [local] / rpl / lapack / lapack / zla_gercond_x.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:54:17 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b ZLA_GERCOND_X computes the infinity norm condition number of op(A)*diag(x) for general matrices.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLA_GERCOND_X + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gercond_x.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gercond_x.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gercond_x.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION ZLA_GERCOND_X( TRANS, N, A, LDA, AF,
   22: *                                                LDAF, IPIV, X, INFO,
   23: *                                                WORK, RWORK )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          TRANS
   27: *       INTEGER            N, LDA, LDAF, INFO
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       INTEGER            IPIV( * )
   31: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
   32: *       DOUBLE PRECISION   RWORK( * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *>    ZLA_GERCOND_X computes the infinity norm condition number of
   42: *>    op(A) * diag(X) where X is a COMPLEX*16 vector.
   43: *> \endverbatim
   44: *
   45: *  Arguments:
   46: *  ==========
   47: *
   48: *> \param[in] TRANS
   49: *> \verbatim
   50: *>          TRANS is CHARACTER*1
   51: *>     Specifies the form of the system of equations:
   52: *>       = 'N':  A * X = B     (No transpose)
   53: *>       = 'T':  A**T * X = B  (Transpose)
   54: *>       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
   55: *> \endverbatim
   56: *>
   57: *> \param[in] N
   58: *> \verbatim
   59: *>          N is INTEGER
   60: *>     The number of linear equations, i.e., the order of the
   61: *>     matrix A.  N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] A
   65: *> \verbatim
   66: *>          A is COMPLEX*16 array, dimension (LDA,N)
   67: *>     On entry, the N-by-N matrix A.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] LDA
   71: *> \verbatim
   72: *>          LDA is INTEGER
   73: *>     The leading dimension of the array A.  LDA >= max(1,N).
   74: *> \endverbatim
   75: *>
   76: *> \param[in] AF
   77: *> \verbatim
   78: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
   79: *>     The factors L and U from the factorization
   80: *>     A = P*L*U as computed by ZGETRF.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] LDAF
   84: *> \verbatim
   85: *>          LDAF is INTEGER
   86: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
   87: *> \endverbatim
   88: *>
   89: *> \param[in] IPIV
   90: *> \verbatim
   91: *>          IPIV is INTEGER array, dimension (N)
   92: *>     The pivot indices from the factorization A = P*L*U
   93: *>     as computed by ZGETRF; row i of the matrix was interchanged
   94: *>     with row IPIV(i).
   95: *> \endverbatim
   96: *>
   97: *> \param[in] X
   98: *> \verbatim
   99: *>          X is COMPLEX*16 array, dimension (N)
  100: *>     The vector X in the formula op(A) * diag(X).
  101: *> \endverbatim
  102: *>
  103: *> \param[out] INFO
  104: *> \verbatim
  105: *>          INFO is INTEGER
  106: *>       = 0:  Successful exit.
  107: *>     i > 0:  The ith argument is invalid.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] WORK
  111: *> \verbatim
  112: *>          WORK is COMPLEX*16 array, dimension (2*N).
  113: *>     Workspace.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] RWORK
  117: *> \verbatim
  118: *>          RWORK is DOUBLE PRECISION array, dimension (N).
  119: *>     Workspace.
  120: *> \endverbatim
  121: *
  122: *  Authors:
  123: *  ========
  124: *
  125: *> \author Univ. of Tennessee
  126: *> \author Univ. of California Berkeley
  127: *> \author Univ. of Colorado Denver
  128: *> \author NAG Ltd.
  129: *
  130: *> \date December 2016
  131: *
  132: *> \ingroup complex16GEcomputational
  133: *
  134: *  =====================================================================
  135:       DOUBLE PRECISION FUNCTION ZLA_GERCOND_X( TRANS, N, A, LDA, AF,
  136:      $                                         LDAF, IPIV, X, INFO,
  137:      $                                         WORK, RWORK )
  138: *
  139: *  -- LAPACK computational routine (version 3.7.0) --
  140: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  141: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  142: *     December 2016
  143: *
  144: *     .. Scalar Arguments ..
  145:       CHARACTER          TRANS
  146:       INTEGER            N, LDA, LDAF, INFO
  147: *     ..
  148: *     .. Array Arguments ..
  149:       INTEGER            IPIV( * )
  150:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
  151:       DOUBLE PRECISION   RWORK( * )
  152: *     ..
  153: *
  154: *  =====================================================================
  155: *
  156: *     .. Local Scalars ..
  157:       LOGICAL            NOTRANS
  158:       INTEGER            KASE
  159:       DOUBLE PRECISION   AINVNM, ANORM, TMP
  160:       INTEGER            I, J
  161:       COMPLEX*16         ZDUM
  162: *     ..
  163: *     .. Local Arrays ..
  164:       INTEGER            ISAVE( 3 )
  165: *     ..
  166: *     .. External Functions ..
  167:       LOGICAL            LSAME
  168:       EXTERNAL           LSAME
  169: *     ..
  170: *     .. External Subroutines ..
  171:       EXTERNAL           ZLACN2, ZGETRS, XERBLA
  172: *     ..
  173: *     .. Intrinsic Functions ..
  174:       INTRINSIC          ABS, MAX, REAL, DIMAG
  175: *     ..
  176: *     .. Statement Functions ..
  177:       DOUBLE PRECISION   CABS1
  178: *     ..
  179: *     .. Statement Function Definitions ..
  180:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  181: *     ..
  182: *     .. Executable Statements ..
  183: *
  184:       ZLA_GERCOND_X = 0.0D+0
  185: *
  186:       INFO = 0
  187:       NOTRANS = LSAME( TRANS, 'N' )
  188:       IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT.
  189:      $     LSAME( TRANS, 'C' ) ) THEN
  190:          INFO = -1
  191:       ELSE IF( N.LT.0 ) THEN
  192:          INFO = -2
  193:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  194:          INFO = -4
  195:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  196:          INFO = -6
  197:       END IF
  198:       IF( INFO.NE.0 ) THEN
  199:          CALL XERBLA( 'ZLA_GERCOND_X', -INFO )
  200:          RETURN
  201:       END IF
  202: *
  203: *     Compute norm of op(A)*op2(C).
  204: *
  205:       ANORM = 0.0D+0
  206:       IF ( NOTRANS ) THEN
  207:          DO I = 1, N
  208:             TMP = 0.0D+0
  209:             DO J = 1, N
  210:                TMP = TMP + CABS1( A( I, J ) * X( J ) )
  211:             END DO
  212:             RWORK( I ) = TMP
  213:             ANORM = MAX( ANORM, TMP )
  214:          END DO
  215:       ELSE
  216:          DO I = 1, N
  217:             TMP = 0.0D+0
  218:             DO J = 1, N
  219:                TMP = TMP + CABS1( A( J, I ) * X( J ) )
  220:             END DO
  221:             RWORK( I ) = TMP
  222:             ANORM = MAX( ANORM, TMP )
  223:          END DO
  224:       END IF
  225: *
  226: *     Quick return if possible.
  227: *
  228:       IF( N.EQ.0 ) THEN
  229:          ZLA_GERCOND_X = 1.0D+0
  230:          RETURN
  231:       ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
  232:          RETURN
  233:       END IF
  234: *
  235: *     Estimate the norm of inv(op(A)).
  236: *
  237:       AINVNM = 0.0D+0
  238: *
  239:       KASE = 0
  240:    10 CONTINUE
  241:       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  242:       IF( KASE.NE.0 ) THEN
  243:          IF( KASE.EQ.2 ) THEN
  244: *           Multiply by R.
  245:             DO I = 1, N
  246:                WORK( I ) = WORK( I ) * RWORK( I )
  247:             END DO
  248: *
  249:             IF ( NOTRANS ) THEN
  250:                CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  251:      $            WORK, N, INFO )
  252:             ELSE
  253:                CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
  254:      $            WORK, N, INFO )
  255:             ENDIF
  256: *
  257: *           Multiply by inv(X).
  258: *
  259:             DO I = 1, N
  260:                WORK( I ) = WORK( I ) / X( I )
  261:             END DO
  262:          ELSE
  263: *
  264: *           Multiply by inv(X**H).
  265: *
  266:             DO I = 1, N
  267:                WORK( I ) = WORK( I ) / X( I )
  268:             END DO
  269: *
  270:             IF ( NOTRANS ) THEN
  271:                CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
  272:      $            WORK, N, INFO )
  273:             ELSE
  274:                CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  275:      $            WORK, N, INFO )
  276:             END IF
  277: *
  278: *           Multiply by R.
  279: *
  280:             DO I = 1, N
  281:                WORK( I ) = WORK( I ) * RWORK( I )
  282:             END DO
  283:          END IF
  284:          GO TO 10
  285:       END IF
  286: *
  287: *     Compute the estimate of the reciprocal condition number.
  288: *
  289:       IF( AINVNM .NE. 0.0D+0 )
  290:      $   ZLA_GERCOND_X = 1.0D+0 / AINVNM
  291: *
  292:       RETURN
  293: *
  294:       END

CVSweb interface <joel.bertrand@systella.fr>