File:  [local] / rpl / lapack / lapack / zla_gercond_c.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:04:07 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       DOUBLE PRECISION FUNCTION ZLA_GERCOND_C( TRANS, N, A, LDA, AF, 
    2:      $                                         LDAF, IPIV, C, CAPPLY,
    3:      $                                         INFO, WORK, RWORK )
    4: *
    5: *     -- LAPACK routine (version 3.2.1)                                 --
    6: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    7: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    8: *     -- April 2009                                                   --
    9: *
   10: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   11: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   12: *
   13:       IMPLICIT NONE
   14: *     ..
   15: *     .. Scalar Aguments ..
   16:       CHARACTER          TRANS
   17:       LOGICAL            CAPPLY
   18:       INTEGER            N, LDA, LDAF, INFO
   19: *     ..
   20: *     .. Array Arguments ..
   21:       INTEGER            IPIV( * )
   22:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * )
   23:       DOUBLE PRECISION   C( * ), RWORK( * )
   24: *     ..
   25: *
   26: *  Purpose
   27: *  =======
   28: *
   29: *     ZLA_GERCOND_C computes the infinity norm condition number of
   30: *     op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *     TRANS   (input) CHARACTER*1
   36: *     Specifies the form of the system of equations:
   37: *       = 'N':  A * X = B     (No transpose)
   38: *       = 'T':  A**T * X = B  (Transpose)
   39: *       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
   40: *
   41: *     N       (input) INTEGER
   42: *     The number of linear equations, i.e., the order of the
   43: *     matrix A.  N >= 0.
   44: *
   45: *     A       (input) COMPLEX*16 array, dimension (LDA,N)
   46: *     On entry, the N-by-N matrix A
   47: *
   48: *     LDA     (input) INTEGER
   49: *     The leading dimension of the array A.  LDA >= max(1,N).
   50: *
   51: *     AF      (input) COMPLEX*16 array, dimension (LDAF,N)
   52: *     The factors L and U from the factorization
   53: *     A = P*L*U as computed by ZGETRF.
   54: *
   55: *     LDAF    (input) INTEGER
   56: *     The leading dimension of the array AF.  LDAF >= max(1,N).
   57: *
   58: *     IPIV    (input) INTEGER array, dimension (N)
   59: *     The pivot indices from the factorization A = P*L*U
   60: *     as computed by ZGETRF; row i of the matrix was interchanged
   61: *     with row IPIV(i).
   62: *
   63: *     C       (input) DOUBLE PRECISION array, dimension (N)
   64: *     The vector C in the formula op(A) * inv(diag(C)).
   65: *
   66: *     CAPPLY  (input) LOGICAL
   67: *     If .TRUE. then access the vector C in the formula above.
   68: *
   69: *     INFO    (output) INTEGER
   70: *       = 0:  Successful exit.
   71: *     i > 0:  The ith argument is invalid.
   72: *
   73: *     WORK    (input) COMPLEX*16 array, dimension (2*N).
   74: *     Workspace.
   75: *
   76: *     RWORK   (input) DOUBLE PRECISION array, dimension (N).
   77: *     Workspace.
   78: *
   79: *  =====================================================================
   80: *
   81: *     .. Local Scalars ..
   82:       LOGICAL            NOTRANS
   83:       INTEGER            KASE, I, J
   84:       DOUBLE PRECISION   AINVNM, ANORM, TMP
   85:       COMPLEX*16         ZDUM
   86: *     ..
   87: *     .. Local Arrays ..
   88:       INTEGER            ISAVE( 3 )
   89: *     ..
   90: *     .. External Functions ..
   91:       LOGICAL            LSAME
   92:       EXTERNAL           LSAME
   93: *     ..
   94: *     .. External Subroutines ..
   95:       EXTERNAL           ZLACN2, ZGETRS, XERBLA
   96: *     ..
   97: *     .. Intrinsic Functions ..
   98:       INTRINSIC          ABS, MAX, REAL, DIMAG
   99: *     ..
  100: *     .. Statement Functions ..
  101:       DOUBLE PRECISION   CABS1
  102: *     ..
  103: *     .. Statement Function Definitions ..
  104:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  105: *     ..
  106: *     .. Executable Statements ..
  107:       ZLA_GERCOND_C = 0.0D+0
  108: *
  109:       INFO = 0
  110:       NOTRANS = LSAME( TRANS, 'N' )
  111:       IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT.
  112:      $     LSAME( TRANS, 'C' ) ) THEN
  113:       ELSE IF( N.LT.0 ) THEN
  114:          INFO = -2
  115:       END IF
  116:       IF( INFO.NE.0 ) THEN
  117:          CALL XERBLA( 'ZLA_GERCOND_C', -INFO )
  118:          RETURN
  119:       END IF
  120: *
  121: *     Compute norm of op(A)*op2(C).
  122: *
  123:       ANORM = 0.0D+0
  124:       IF ( NOTRANS ) THEN
  125:          DO I = 1, N
  126:             TMP = 0.0D+0
  127:             IF ( CAPPLY ) THEN
  128:                DO J = 1, N
  129:                   TMP = TMP + CABS1( A( I, J ) ) / C( J )
  130:                END DO
  131:             ELSE
  132:                DO J = 1, N
  133:                   TMP = TMP + CABS1( A( I, J ) )
  134:                END DO
  135:             END IF
  136:             RWORK( I ) = TMP
  137:             ANORM = MAX( ANORM, TMP )
  138:          END DO
  139:       ELSE
  140:          DO I = 1, N
  141:             TMP = 0.0D+0
  142:             IF ( CAPPLY ) THEN
  143:                DO J = 1, N
  144:                   TMP = TMP + CABS1( A( J, I ) ) / C( J )
  145:                END DO
  146:             ELSE
  147:                DO J = 1, N
  148:                   TMP = TMP + CABS1( A( J, I ) )
  149:                END DO
  150:             END IF
  151:             RWORK( I ) = TMP
  152:             ANORM = MAX( ANORM, TMP )
  153:          END DO
  154:       END IF
  155: *
  156: *     Quick return if possible.
  157: *
  158:       IF( N.EQ.0 ) THEN
  159:          ZLA_GERCOND_C = 1.0D+0
  160:          RETURN
  161:       ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
  162:          RETURN
  163:       END IF
  164: *
  165: *     Estimate the norm of inv(op(A)).
  166: *
  167:       AINVNM = 0.0D+0
  168: *
  169:       KASE = 0
  170:    10 CONTINUE
  171:       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  172:       IF( KASE.NE.0 ) THEN
  173:          IF( KASE.EQ.2 ) THEN
  174: *
  175: *           Multiply by R.
  176: *
  177:             DO I = 1, N
  178:                WORK( I ) = WORK( I ) * RWORK( I )
  179:             END DO
  180: *
  181:             IF (NOTRANS) THEN
  182:                CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  183:      $            WORK, N, INFO )
  184:             ELSE
  185:                CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
  186:      $            WORK, N, INFO )
  187:             ENDIF
  188: *
  189: *           Multiply by inv(C).
  190: *
  191:             IF ( CAPPLY ) THEN
  192:                DO I = 1, N
  193:                   WORK( I ) = WORK( I ) * C( I )
  194:                END DO
  195:             END IF
  196:          ELSE
  197: *
  198: *           Multiply by inv(C').
  199: *
  200:             IF ( CAPPLY ) THEN
  201:                DO I = 1, N
  202:                   WORK( I ) = WORK( I ) * C( I )
  203:                END DO
  204:             END IF
  205: *
  206:             IF ( NOTRANS ) THEN
  207:                CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
  208:      $            WORK, N, INFO )
  209:             ELSE
  210:                CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  211:      $            WORK, N, INFO )
  212:             END IF
  213: *
  214: *           Multiply by R.
  215: *
  216:             DO I = 1, N
  217:                WORK( I ) = WORK( I ) * RWORK( I )
  218:             END DO
  219:          END IF
  220:          GO TO 10
  221:       END IF
  222: *
  223: *     Compute the estimate of the reciprocal condition number.
  224: *
  225:       IF( AINVNM .NE. 0.0D+0 )
  226:      $   ZLA_GERCOND_C = 1.0D+0 / AINVNM
  227: *
  228:       RETURN
  229: *
  230:       END

CVSweb interface <joel.bertrand@systella.fr>