File:  [local] / rpl / lapack / lapack / zla_gercond_c.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:27 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLA_GERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for general matrices.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLA_GERCOND_C + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gercond_c.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gercond_c.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gercond_c.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION ZLA_GERCOND_C( TRANS, N, A, LDA, AF,
   22: *                                                LDAF, IPIV, C, CAPPLY,
   23: *                                                INFO, WORK, RWORK )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          TRANS
   27: *       LOGICAL            CAPPLY
   28: *       INTEGER            N, LDA, LDAF, INFO
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IPIV( * )
   32: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * )
   33: *       DOUBLE PRECISION   C( * ), RWORK( * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *>    ZLA_GERCOND_C computes the infinity norm condition number of
   43: *>    op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] TRANS
   50: *> \verbatim
   51: *>          TRANS is CHARACTER*1
   52: *>     Specifies the form of the system of equations:
   53: *>       = 'N':  A * X = B     (No transpose)
   54: *>       = 'T':  A**T * X = B  (Transpose)
   55: *>       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>     The number of linear equations, i.e., the order of the
   62: *>     matrix A.  N >= 0.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] A
   66: *> \verbatim
   67: *>          A is COMPLEX*16 array, dimension (LDA,N)
   68: *>     On entry, the N-by-N matrix A
   69: *> \endverbatim
   70: *>
   71: *> \param[in] LDA
   72: *> \verbatim
   73: *>          LDA is INTEGER
   74: *>     The leading dimension of the array A.  LDA >= max(1,N).
   75: *> \endverbatim
   76: *>
   77: *> \param[in] AF
   78: *> \verbatim
   79: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
   80: *>     The factors L and U from the factorization
   81: *>     A = P*L*U as computed by ZGETRF.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] LDAF
   85: *> \verbatim
   86: *>          LDAF is INTEGER
   87: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
   88: *> \endverbatim
   89: *>
   90: *> \param[in] IPIV
   91: *> \verbatim
   92: *>          IPIV is INTEGER array, dimension (N)
   93: *>     The pivot indices from the factorization A = P*L*U
   94: *>     as computed by ZGETRF; row i of the matrix was interchanged
   95: *>     with row IPIV(i).
   96: *> \endverbatim
   97: *>
   98: *> \param[in] C
   99: *> \verbatim
  100: *>          C is DOUBLE PRECISION array, dimension (N)
  101: *>     The vector C in the formula op(A) * inv(diag(C)).
  102: *> \endverbatim
  103: *>
  104: *> \param[in] CAPPLY
  105: *> \verbatim
  106: *>          CAPPLY is LOGICAL
  107: *>     If .TRUE. then access the vector C in the formula above.
  108: *> \endverbatim
  109: *>
  110: *> \param[out] INFO
  111: *> \verbatim
  112: *>          INFO is INTEGER
  113: *>       = 0:  Successful exit.
  114: *>     i > 0:  The ith argument is invalid.
  115: *> \endverbatim
  116: *>
  117: *> \param[out] WORK
  118: *> \verbatim
  119: *>          WORK is COMPLEX*16 array, dimension (2*N).
  120: *>     Workspace.
  121: *> \endverbatim
  122: *>
  123: *> \param[out] RWORK
  124: *> \verbatim
  125: *>          RWORK is DOUBLE PRECISION array, dimension (N).
  126: *>     Workspace.
  127: *> \endverbatim
  128: *
  129: *  Authors:
  130: *  ========
  131: *
  132: *> \author Univ. of Tennessee
  133: *> \author Univ. of California Berkeley
  134: *> \author Univ. of Colorado Denver
  135: *> \author NAG Ltd.
  136: *
  137: *> \ingroup complex16GEcomputational
  138: *
  139: *  =====================================================================
  140:       DOUBLE PRECISION FUNCTION ZLA_GERCOND_C( TRANS, N, A, LDA, AF,
  141:      $                                         LDAF, IPIV, C, CAPPLY,
  142:      $                                         INFO, WORK, RWORK )
  143: *
  144: *  -- LAPACK computational routine --
  145: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  146: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  147: *
  148: *     .. Scalar Arguments ..
  149:       CHARACTER          TRANS
  150:       LOGICAL            CAPPLY
  151:       INTEGER            N, LDA, LDAF, INFO
  152: *     ..
  153: *     .. Array Arguments ..
  154:       INTEGER            IPIV( * )
  155:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * )
  156:       DOUBLE PRECISION   C( * ), RWORK( * )
  157: *     ..
  158: *
  159: *  =====================================================================
  160: *
  161: *     .. Local Scalars ..
  162:       LOGICAL            NOTRANS
  163:       INTEGER            KASE, I, J
  164:       DOUBLE PRECISION   AINVNM, ANORM, TMP
  165:       COMPLEX*16         ZDUM
  166: *     ..
  167: *     .. Local Arrays ..
  168:       INTEGER            ISAVE( 3 )
  169: *     ..
  170: *     .. External Functions ..
  171:       LOGICAL            LSAME
  172:       EXTERNAL           LSAME
  173: *     ..
  174: *     .. External Subroutines ..
  175:       EXTERNAL           ZLACN2, ZGETRS, XERBLA
  176: *     ..
  177: *     .. Intrinsic Functions ..
  178:       INTRINSIC          ABS, MAX, REAL, DIMAG
  179: *     ..
  180: *     .. Statement Functions ..
  181:       DOUBLE PRECISION   CABS1
  182: *     ..
  183: *     .. Statement Function Definitions ..
  184:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  185: *     ..
  186: *     .. Executable Statements ..
  187:       ZLA_GERCOND_C = 0.0D+0
  188: *
  189:       INFO = 0
  190:       NOTRANS = LSAME( TRANS, 'N' )
  191:       IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT.
  192:      $     LSAME( TRANS, 'C' ) ) THEN
  193:          INFO = -1
  194:       ELSE IF( N.LT.0 ) THEN
  195:          INFO = -2
  196:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  197:          INFO = -4
  198:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  199:          INFO = -6
  200:       END IF
  201:       IF( INFO.NE.0 ) THEN
  202:          CALL XERBLA( 'ZLA_GERCOND_C', -INFO )
  203:          RETURN
  204:       END IF
  205: *
  206: *     Compute norm of op(A)*op2(C).
  207: *
  208:       ANORM = 0.0D+0
  209:       IF ( NOTRANS ) THEN
  210:          DO I = 1, N
  211:             TMP = 0.0D+0
  212:             IF ( CAPPLY ) THEN
  213:                DO J = 1, N
  214:                   TMP = TMP + CABS1( A( I, J ) ) / C( J )
  215:                END DO
  216:             ELSE
  217:                DO J = 1, N
  218:                   TMP = TMP + CABS1( A( I, J ) )
  219:                END DO
  220:             END IF
  221:             RWORK( I ) = TMP
  222:             ANORM = MAX( ANORM, TMP )
  223:          END DO
  224:       ELSE
  225:          DO I = 1, N
  226:             TMP = 0.0D+0
  227:             IF ( CAPPLY ) THEN
  228:                DO J = 1, N
  229:                   TMP = TMP + CABS1( A( J, I ) ) / C( J )
  230:                END DO
  231:             ELSE
  232:                DO J = 1, N
  233:                   TMP = TMP + CABS1( A( J, I ) )
  234:                END DO
  235:             END IF
  236:             RWORK( I ) = TMP
  237:             ANORM = MAX( ANORM, TMP )
  238:          END DO
  239:       END IF
  240: *
  241: *     Quick return if possible.
  242: *
  243:       IF( N.EQ.0 ) THEN
  244:          ZLA_GERCOND_C = 1.0D+0
  245:          RETURN
  246:       ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
  247:          RETURN
  248:       END IF
  249: *
  250: *     Estimate the norm of inv(op(A)).
  251: *
  252:       AINVNM = 0.0D+0
  253: *
  254:       KASE = 0
  255:    10 CONTINUE
  256:       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  257:       IF( KASE.NE.0 ) THEN
  258:          IF( KASE.EQ.2 ) THEN
  259: *
  260: *           Multiply by R.
  261: *
  262:             DO I = 1, N
  263:                WORK( I ) = WORK( I ) * RWORK( I )
  264:             END DO
  265: *
  266:             IF (NOTRANS) THEN
  267:                CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  268:      $            WORK, N, INFO )
  269:             ELSE
  270:                CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
  271:      $            WORK, N, INFO )
  272:             ENDIF
  273: *
  274: *           Multiply by inv(C).
  275: *
  276:             IF ( CAPPLY ) THEN
  277:                DO I = 1, N
  278:                   WORK( I ) = WORK( I ) * C( I )
  279:                END DO
  280:             END IF
  281:          ELSE
  282: *
  283: *           Multiply by inv(C**H).
  284: *
  285:             IF ( CAPPLY ) THEN
  286:                DO I = 1, N
  287:                   WORK( I ) = WORK( I ) * C( I )
  288:                END DO
  289:             END IF
  290: *
  291:             IF ( NOTRANS ) THEN
  292:                CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
  293:      $            WORK, N, INFO )
  294:             ELSE
  295:                CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  296:      $            WORK, N, INFO )
  297:             END IF
  298: *
  299: *           Multiply by R.
  300: *
  301:             DO I = 1, N
  302:                WORK( I ) = WORK( I ) * RWORK( I )
  303:             END DO
  304:          END IF
  305:          GO TO 10
  306:       END IF
  307: *
  308: *     Compute the estimate of the reciprocal condition number.
  309: *
  310:       IF( AINVNM .NE. 0.0D+0 )
  311:      $   ZLA_GERCOND_C = 1.0D+0 / AINVNM
  312: *
  313:       RETURN
  314: *
  315: *     End of ZLA_GERCOND_C
  316: *
  317:       END

CVSweb interface <joel.bertrand@systella.fr>