File:  [local] / rpl / lapack / lapack / zla_geamv.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:27 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLA_GEAMV computes a matrix-vector product using a general matrix to calculate error bounds.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLA_GEAMV + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_geamv.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_geamv.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_geamv.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLA_GEAMV( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
   22: *                             Y, INCY )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       DOUBLE PRECISION   ALPHA, BETA
   26: *       INTEGER            INCX, INCY, LDA, M, N
   27: *       INTEGER            TRANS
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       COMPLEX*16         A( LDA, * ), X( * )
   31: *       DOUBLE PRECISION   Y( * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZLA_GEAMV  performs one of the matrix-vector operations
   41: *>
   42: *>         y := alpha*abs(A)*abs(x) + beta*abs(y),
   43: *>    or   y := alpha*abs(A)**T*abs(x) + beta*abs(y),
   44: *>
   45: *> where alpha and beta are scalars, x and y are vectors and A is an
   46: *> m by n matrix.
   47: *>
   48: *> This function is primarily used in calculating error bounds.
   49: *> To protect against underflow during evaluation, components in
   50: *> the resulting vector are perturbed away from zero by (N+1)
   51: *> times the underflow threshold.  To prevent unnecessarily large
   52: *> errors for block-structure embedded in general matrices,
   53: *> "symbolically" zero components are not perturbed.  A zero
   54: *> entry is considered "symbolic" if all multiplications involved
   55: *> in computing that entry have at least one zero multiplicand.
   56: *> \endverbatim
   57: *
   58: *  Arguments:
   59: *  ==========
   60: *
   61: *> \param[in] TRANS
   62: *> \verbatim
   63: *>          TRANS is INTEGER
   64: *>           On entry, TRANS specifies the operation to be performed as
   65: *>           follows:
   66: *>
   67: *>             BLAS_NO_TRANS      y := alpha*abs(A)*abs(x) + beta*abs(y)
   68: *>             BLAS_TRANS         y := alpha*abs(A**T)*abs(x) + beta*abs(y)
   69: *>             BLAS_CONJ_TRANS    y := alpha*abs(A**T)*abs(x) + beta*abs(y)
   70: *>
   71: *>           Unchanged on exit.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] M
   75: *> \verbatim
   76: *>          M is INTEGER
   77: *>           On entry, M specifies the number of rows of the matrix A.
   78: *>           M must be at least zero.
   79: *>           Unchanged on exit.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] N
   83: *> \verbatim
   84: *>          N is INTEGER
   85: *>           On entry, N specifies the number of columns of the matrix A.
   86: *>           N must be at least zero.
   87: *>           Unchanged on exit.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] ALPHA
   91: *> \verbatim
   92: *>          ALPHA is DOUBLE PRECISION
   93: *>           On entry, ALPHA specifies the scalar alpha.
   94: *>           Unchanged on exit.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] A
   98: *> \verbatim
   99: *>          A is COMPLEX*16 array, dimension ( LDA, n )
  100: *>           Before entry, the leading m by n part of the array A must
  101: *>           contain the matrix of coefficients.
  102: *>           Unchanged on exit.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] LDA
  106: *> \verbatim
  107: *>          LDA is INTEGER
  108: *>           On entry, LDA specifies the first dimension of A as declared
  109: *>           in the calling (sub) program. LDA must be at least
  110: *>           max( 1, m ).
  111: *>           Unchanged on exit.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] X
  115: *> \verbatim
  116: *>          X is COMPLEX*16 array, dimension at least
  117: *>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
  118: *>           and at least
  119: *>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
  120: *>           Before entry, the incremented array X must contain the
  121: *>           vector x.
  122: *>           Unchanged on exit.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] INCX
  126: *> \verbatim
  127: *>          INCX is INTEGER
  128: *>           On entry, INCX specifies the increment for the elements of
  129: *>           X. INCX must not be zero.
  130: *>           Unchanged on exit.
  131: *> \endverbatim
  132: *>
  133: *> \param[in] BETA
  134: *> \verbatim
  135: *>          BETA is DOUBLE PRECISION
  136: *>           On entry, BETA specifies the scalar beta. When BETA is
  137: *>           supplied as zero then Y need not be set on input.
  138: *>           Unchanged on exit.
  139: *> \endverbatim
  140: *>
  141: *> \param[in,out] Y
  142: *> \verbatim
  143: *>          Y is DOUBLE PRECISION array, dimension
  144: *>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  145: *>           and at least
  146: *>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  147: *>           Before entry with BETA non-zero, the incremented array Y
  148: *>           must contain the vector y. On exit, Y is overwritten by the
  149: *>           updated vector y.
  150: *> \endverbatim
  151: *>
  152: *> \param[in] INCY
  153: *> \verbatim
  154: *>          INCY is INTEGER
  155: *>           On entry, INCY specifies the increment for the elements of
  156: *>           Y. INCY must not be zero.
  157: *>           Unchanged on exit.
  158: *>
  159: *>  Level 2 Blas routine.
  160: *> \endverbatim
  161: *
  162: *  Authors:
  163: *  ========
  164: *
  165: *> \author Univ. of Tennessee
  166: *> \author Univ. of California Berkeley
  167: *> \author Univ. of Colorado Denver
  168: *> \author NAG Ltd.
  169: *
  170: *> \ingroup complex16GEcomputational
  171: *
  172: *  =====================================================================
  173:       SUBROUTINE ZLA_GEAMV( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
  174:      $                      Y, INCY )
  175: *
  176: *  -- LAPACK computational routine --
  177: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  178: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  179: *
  180: *     .. Scalar Arguments ..
  181:       DOUBLE PRECISION   ALPHA, BETA
  182:       INTEGER            INCX, INCY, LDA, M, N
  183:       INTEGER            TRANS
  184: *     ..
  185: *     .. Array Arguments ..
  186:       COMPLEX*16         A( LDA, * ), X( * )
  187:       DOUBLE PRECISION   Y( * )
  188: *     ..
  189: *
  190: *  =====================================================================
  191: *
  192: *     .. Parameters ..
  193:       COMPLEX*16         ONE, ZERO
  194:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  195: *     ..
  196: *     .. Local Scalars ..
  197:       LOGICAL            SYMB_ZERO
  198:       DOUBLE PRECISION   TEMP, SAFE1
  199:       INTEGER            I, INFO, IY, J, JX, KX, KY, LENX, LENY
  200:       COMPLEX*16         CDUM
  201: *     ..
  202: *     .. External Subroutines ..
  203:       EXTERNAL           XERBLA, DLAMCH
  204:       DOUBLE PRECISION   DLAMCH
  205: *     ..
  206: *     .. External Functions ..
  207:       EXTERNAL           ILATRANS
  208:       INTEGER            ILATRANS
  209: *     ..
  210: *     .. Intrinsic Functions ..
  211:       INTRINSIC          MAX, ABS, REAL, DIMAG, SIGN
  212: *     ..
  213: *     .. Statement Functions ..
  214:       DOUBLE PRECISION   CABS1
  215: *     ..
  216: *     .. Statement Function Definitions ..
  217:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  218: *     ..
  219: *     .. Executable Statements ..
  220: *
  221: *     Test the input parameters.
  222: *
  223:       INFO = 0
  224:       IF     ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) )
  225:      $           .OR. ( TRANS.EQ.ILATRANS( 'T' ) )
  226:      $           .OR. ( TRANS.EQ.ILATRANS( 'C' ) ) ) ) THEN
  227:          INFO = 1
  228:       ELSE IF( M.LT.0 )THEN
  229:          INFO = 2
  230:       ELSE IF( N.LT.0 )THEN
  231:          INFO = 3
  232:       ELSE IF( LDA.LT.MAX( 1, M ) )THEN
  233:          INFO = 6
  234:       ELSE IF( INCX.EQ.0 )THEN
  235:          INFO = 8
  236:       ELSE IF( INCY.EQ.0 )THEN
  237:          INFO = 11
  238:       END IF
  239:       IF( INFO.NE.0 )THEN
  240:          CALL XERBLA( 'ZLA_GEAMV ', INFO )
  241:          RETURN
  242:       END IF
  243: *
  244: *     Quick return if possible.
  245: *
  246:       IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  247:      $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  248:      $   RETURN
  249: *
  250: *     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
  251: *     up the start points in  X  and  Y.
  252: *
  253:       IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  254:          LENX = N
  255:          LENY = M
  256:       ELSE
  257:          LENX = M
  258:          LENY = N
  259:       END IF
  260:       IF( INCX.GT.0 )THEN
  261:          KX = 1
  262:       ELSE
  263:          KX = 1 - ( LENX - 1 )*INCX
  264:       END IF
  265:       IF( INCY.GT.0 )THEN
  266:          KY = 1
  267:       ELSE
  268:          KY = 1 - ( LENY - 1 )*INCY
  269:       END IF
  270: *
  271: *     Set SAFE1 essentially to be the underflow threshold times the
  272: *     number of additions in each row.
  273: *
  274:       SAFE1 = DLAMCH( 'Safe minimum' )
  275:       SAFE1 = (N+1)*SAFE1
  276: *
  277: *     Form  y := alpha*abs(A)*abs(x) + beta*abs(y).
  278: *
  279: *     The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
  280: *     the inexact flag.  Still doesn't help change the iteration order
  281: *     to per-column.
  282: *
  283:       IY = KY
  284:       IF ( INCX.EQ.1 ) THEN
  285:          IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  286:             DO I = 1, LENY
  287:                IF ( BETA .EQ. 0.0D+0 ) THEN
  288:                   SYMB_ZERO = .TRUE.
  289:                   Y( IY ) = 0.0D+0
  290:                ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  291:                   SYMB_ZERO = .TRUE.
  292:                ELSE
  293:                   SYMB_ZERO = .FALSE.
  294:                   Y( IY ) = BETA * ABS( Y( IY ) )
  295:                END IF
  296:                IF ( ALPHA .NE. 0.0D+0 ) THEN
  297:                   DO J = 1, LENX
  298:                      TEMP = CABS1( A( I, J ) )
  299:                      SYMB_ZERO = SYMB_ZERO .AND.
  300:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  301: 
  302:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  303:                   END DO
  304:                END IF
  305: 
  306:                IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  307:      $              Y( IY ) + SIGN( SAFE1, Y( IY ) )
  308: 
  309:                IY = IY + INCY
  310:             END DO
  311:          ELSE
  312:             DO I = 1, LENY
  313:                IF ( BETA .EQ. 0.0D+0 ) THEN
  314:                   SYMB_ZERO = .TRUE.
  315:                   Y( IY ) = 0.0D+0
  316:                ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  317:                   SYMB_ZERO = .TRUE.
  318:                ELSE
  319:                   SYMB_ZERO = .FALSE.
  320:                   Y( IY ) = BETA * ABS( Y( IY ) )
  321:                END IF
  322:                IF ( ALPHA .NE. 0.0D+0 ) THEN
  323:                   DO J = 1, LENX
  324:                      TEMP = CABS1( A( J, I ) )
  325:                      SYMB_ZERO = SYMB_ZERO .AND.
  326:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  327: 
  328:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  329:                   END DO
  330:                END IF
  331: 
  332:                IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  333:      $              Y( IY ) + SIGN( SAFE1, Y( IY ) )
  334: 
  335:                IY = IY + INCY
  336:             END DO
  337:          END IF
  338:       ELSE
  339:          IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  340:             DO I = 1, LENY
  341:                IF ( BETA .EQ. 0.0D+0 ) THEN
  342:                   SYMB_ZERO = .TRUE.
  343:                   Y( IY ) = 0.0D+0
  344:                ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  345:                   SYMB_ZERO = .TRUE.
  346:                ELSE
  347:                   SYMB_ZERO = .FALSE.
  348:                   Y( IY ) = BETA * ABS( Y( IY ) )
  349:                END IF
  350:                IF ( ALPHA .NE. 0.0D+0 ) THEN
  351:                   JX = KX
  352:                   DO J = 1, LENX
  353:                      TEMP = CABS1( A( I, J ) )
  354:                      SYMB_ZERO = SYMB_ZERO .AND.
  355:      $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  356: 
  357:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  358:                      JX = JX + INCX
  359:                   END DO
  360:                END IF
  361: 
  362:                IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  363:      $              Y( IY ) + SIGN( SAFE1, Y( IY ) )
  364: 
  365:                IY = IY + INCY
  366:             END DO
  367:          ELSE
  368:             DO I = 1, LENY
  369:                IF ( BETA .EQ. 0.0D+0 ) THEN
  370:                   SYMB_ZERO = .TRUE.
  371:                   Y( IY ) = 0.0D+0
  372:                ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  373:                   SYMB_ZERO = .TRUE.
  374:                ELSE
  375:                   SYMB_ZERO = .FALSE.
  376:                   Y( IY ) = BETA * ABS( Y( IY ) )
  377:                END IF
  378:                IF ( ALPHA .NE. 0.0D+0 ) THEN
  379:                   JX = KX
  380:                   DO J = 1, LENX
  381:                      TEMP = CABS1( A( J, I ) )
  382:                      SYMB_ZERO = SYMB_ZERO .AND.
  383:      $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  384: 
  385:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  386:                      JX = JX + INCX
  387:                   END DO
  388:                END IF
  389: 
  390:                IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  391:      $              Y( IY ) + SIGN( SAFE1, Y( IY ) )
  392: 
  393:                IY = IY + INCY
  394:             END DO
  395:          END IF
  396: 
  397:       END IF
  398: *
  399:       RETURN
  400: *
  401: *     End of ZLA_GEAMV
  402: *
  403:       END

CVSweb interface <joel.bertrand@systella.fr>