File:  [local] / rpl / lapack / lapack / zla_geamv.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:36 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_24, rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: *> \brief \b ZLA_GEAMV computes a matrix-vector product using a general matrix to calculate error bounds.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLA_GEAMV + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_geamv.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_geamv.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_geamv.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLA_GEAMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
   22: *                              Y, INCY )
   23:    24: *       .. Scalar Arguments ..
   25: *       DOUBLE PRECISION   ALPHA, BETA
   26: *       INTEGER            INCX, INCY, LDA, M, N
   27: *       INTEGER            TRANS
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       COMPLEX*16         A( LDA, * ), X( * )
   31: *       DOUBLE PRECISION   Y( * )
   32: *       ..
   33: *  
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZLA_GEAMV  performs one of the matrix-vector operations
   41: *>
   42: *>         y := alpha*abs(A)*abs(x) + beta*abs(y),
   43: *>    or   y := alpha*abs(A)**T*abs(x) + beta*abs(y),
   44: *>
   45: *> where alpha and beta are scalars, x and y are vectors and A is an
   46: *> m by n matrix.
   47: *>
   48: *> This function is primarily used in calculating error bounds.
   49: *> To protect against underflow during evaluation, components in
   50: *> the resulting vector are perturbed away from zero by (N+1)
   51: *> times the underflow threshold.  To prevent unnecessarily large
   52: *> errors for block-structure embedded in general matrices,
   53: *> "symbolically" zero components are not perturbed.  A zero
   54: *> entry is considered "symbolic" if all multiplications involved
   55: *> in computing that entry have at least one zero multiplicand.
   56: *> \endverbatim
   57: *
   58: *  Arguments:
   59: *  ==========
   60: *
   61: *> \param[in] TRANS
   62: *> \verbatim
   63: *>          TRANS is INTEGER
   64: *>           On entry, TRANS specifies the operation to be performed as
   65: *>           follows:
   66: *>
   67: *>             BLAS_NO_TRANS      y := alpha*abs(A)*abs(x) + beta*abs(y)
   68: *>             BLAS_TRANS         y := alpha*abs(A**T)*abs(x) + beta*abs(y)
   69: *>             BLAS_CONJ_TRANS    y := alpha*abs(A**T)*abs(x) + beta*abs(y)
   70: *>
   71: *>           Unchanged on exit.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] M
   75: *> \verbatim
   76: *>          M is INTEGER
   77: *>           On entry, M specifies the number of rows of the matrix A.
   78: *>           M must be at least zero.
   79: *>           Unchanged on exit.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] N
   83: *> \verbatim
   84: *>          N is INTEGER
   85: *>           On entry, N specifies the number of columns of the matrix A.
   86: *>           N must be at least zero.
   87: *>           Unchanged on exit.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] ALPHA
   91: *> \verbatim
   92: *>          ALPHA is DOUBLE PRECISION
   93: *>           On entry, ALPHA specifies the scalar alpha.
   94: *>           Unchanged on exit.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] A
   98: *> \verbatim
   99: *>          A is COMPLEX*16 array of DIMENSION ( LDA, n )
  100: *>           Before entry, the leading m by n part of the array A must
  101: *>           contain the matrix of coefficients.
  102: *>           Unchanged on exit.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] LDA
  106: *> \verbatim
  107: *>          LDA is INTEGER
  108: *>           On entry, LDA specifies the first dimension of A as declared
  109: *>           in the calling (sub) program. LDA must be at least
  110: *>           max( 1, m ).
  111: *>           Unchanged on exit.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] X
  115: *> \verbatim
  116: *>          X is COMPLEX*16 array of DIMENSION at least
  117: *>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
  118: *>           and at least
  119: *>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
  120: *>           Before entry, the incremented array X must contain the
  121: *>           vector x.
  122: *>           Unchanged on exit.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] INCX
  126: *> \verbatim
  127: *>          INCX is INTEGER
  128: *>           On entry, INCX specifies the increment for the elements of
  129: *>           X. INCX must not be zero.
  130: *>           Unchanged on exit.
  131: *> \endverbatim
  132: *>
  133: *> \param[in] BETA
  134: *> \verbatim
  135: *>          BETA is DOUBLE PRECISION
  136: *>           On entry, BETA specifies the scalar beta. When BETA is
  137: *>           supplied as zero then Y need not be set on input.
  138: *>           Unchanged on exit.
  139: *> \endverbatim
  140: *>
  141: *> \param[in,out] Y
  142: *> \verbatim
  143: *>          Y is DOUBLE PRECISION array, dimension
  144: *>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  145: *>           and at least
  146: *>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  147: *>           Before entry with BETA non-zero, the incremented array Y
  148: *>           must contain the vector y. On exit, Y is overwritten by the
  149: *>           updated vector y.
  150: *> \endverbatim
  151: *>
  152: *> \param[in] INCY
  153: *> \verbatim
  154: *>          INCY is INTEGER
  155: *>           On entry, INCY specifies the increment for the elements of
  156: *>           Y. INCY must not be zero.
  157: *>           Unchanged on exit.
  158: *>
  159: *>  Level 2 Blas routine.
  160: *> \endverbatim
  161: *
  162: *  Authors:
  163: *  ========
  164: *
  165: *> \author Univ. of Tennessee 
  166: *> \author Univ. of California Berkeley 
  167: *> \author Univ. of Colorado Denver 
  168: *> \author NAG Ltd. 
  169: *
  170: *> \date September 2012
  171: *
  172: *> \ingroup complex16GEcomputational
  173: *
  174: *  =====================================================================
  175:       SUBROUTINE ZLA_GEAMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
  176:      $                       Y, INCY )
  177: *
  178: *  -- LAPACK computational routine (version 3.4.2) --
  179: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  180: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  181: *     September 2012
  182: *
  183: *     .. Scalar Arguments ..
  184:       DOUBLE PRECISION   ALPHA, BETA
  185:       INTEGER            INCX, INCY, LDA, M, N
  186:       INTEGER            TRANS
  187: *     ..
  188: *     .. Array Arguments ..
  189:       COMPLEX*16         A( LDA, * ), X( * )
  190:       DOUBLE PRECISION   Y( * )
  191: *     ..
  192: *
  193: *  =====================================================================
  194: *
  195: *     .. Parameters ..
  196:       COMPLEX*16         ONE, ZERO
  197:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  198: *     ..
  199: *     .. Local Scalars ..
  200:       LOGICAL            SYMB_ZERO
  201:       DOUBLE PRECISION   TEMP, SAFE1
  202:       INTEGER            I, INFO, IY, J, JX, KX, KY, LENX, LENY
  203:       COMPLEX*16         CDUM
  204: *     ..
  205: *     .. External Subroutines ..
  206:       EXTERNAL           XERBLA, DLAMCH
  207:       DOUBLE PRECISION   DLAMCH
  208: *     ..
  209: *     .. External Functions ..
  210:       EXTERNAL           ILATRANS
  211:       INTEGER            ILATRANS
  212: *     ..
  213: *     .. Intrinsic Functions ..
  214:       INTRINSIC          MAX, ABS, REAL, DIMAG, SIGN
  215: *     ..
  216: *     .. Statement Functions ..
  217:       DOUBLE PRECISION   CABS1
  218: *     ..
  219: *     .. Statement Function Definitions ..
  220:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  221: *     ..
  222: *     .. Executable Statements ..
  223: *
  224: *     Test the input parameters.
  225: *
  226:       INFO = 0
  227:       IF     ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) )
  228:      $           .OR. ( TRANS.EQ.ILATRANS( 'T' ) )
  229:      $           .OR. ( TRANS.EQ.ILATRANS( 'C' ) ) ) ) THEN
  230:          INFO = 1
  231:       ELSE IF( M.LT.0 )THEN
  232:          INFO = 2
  233:       ELSE IF( N.LT.0 )THEN
  234:          INFO = 3
  235:       ELSE IF( LDA.LT.MAX( 1, M ) )THEN
  236:          INFO = 6
  237:       ELSE IF( INCX.EQ.0 )THEN
  238:          INFO = 8
  239:       ELSE IF( INCY.EQ.0 )THEN
  240:          INFO = 11
  241:       END IF
  242:       IF( INFO.NE.0 )THEN
  243:          CALL XERBLA( 'ZLA_GEAMV ', INFO )
  244:          RETURN
  245:       END IF
  246: *
  247: *     Quick return if possible.
  248: *
  249:       IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  250:      $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  251:      $   RETURN
  252: *
  253: *     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
  254: *     up the start points in  X  and  Y.
  255: *
  256:       IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  257:          LENX = N
  258:          LENY = M
  259:       ELSE
  260:          LENX = M
  261:          LENY = N
  262:       END IF
  263:       IF( INCX.GT.0 )THEN
  264:          KX = 1
  265:       ELSE
  266:          KX = 1 - ( LENX - 1 )*INCX
  267:       END IF
  268:       IF( INCY.GT.0 )THEN
  269:          KY = 1
  270:       ELSE
  271:          KY = 1 - ( LENY - 1 )*INCY
  272:       END IF
  273: *
  274: *     Set SAFE1 essentially to be the underflow threshold times the
  275: *     number of additions in each row.
  276: *
  277:       SAFE1 = DLAMCH( 'Safe minimum' )
  278:       SAFE1 = (N+1)*SAFE1
  279: *
  280: *     Form  y := alpha*abs(A)*abs(x) + beta*abs(y).
  281: *
  282: *     The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
  283: *     the inexact flag.  Still doesn't help change the iteration order
  284: *     to per-column.
  285: *
  286:       IY = KY
  287:       IF ( INCX.EQ.1 ) THEN
  288:          IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  289:             DO I = 1, LENY
  290:                IF ( BETA .EQ. 0.0D+0 ) THEN
  291:                   SYMB_ZERO = .TRUE.
  292:                   Y( IY ) = 0.0D+0
  293:                ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  294:                   SYMB_ZERO = .TRUE.
  295:                ELSE
  296:                   SYMB_ZERO = .FALSE.
  297:                   Y( IY ) = BETA * ABS( Y( IY ) )
  298:                END IF
  299:                IF ( ALPHA .NE. 0.0D+0 ) THEN
  300:                   DO J = 1, LENX
  301:                      TEMP = CABS1( A( I, J ) )
  302:                      SYMB_ZERO = SYMB_ZERO .AND.
  303:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  304: 
  305:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  306:                   END DO
  307:                END IF
  308: 
  309:                IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  310:      $              Y( IY ) + SIGN( SAFE1, Y( IY ) )
  311: 
  312:                IY = IY + INCY
  313:             END DO
  314:          ELSE
  315:             DO I = 1, LENY
  316:                IF ( BETA .EQ. 0.0D+0 ) THEN
  317:                   SYMB_ZERO = .TRUE.
  318:                   Y( IY ) = 0.0D+0
  319:                ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  320:                   SYMB_ZERO = .TRUE.
  321:                ELSE
  322:                   SYMB_ZERO = .FALSE.
  323:                   Y( IY ) = BETA * ABS( Y( IY ) )
  324:                END IF
  325:                IF ( ALPHA .NE. 0.0D+0 ) THEN
  326:                   DO J = 1, LENX
  327:                      TEMP = CABS1( A( J, I ) )
  328:                      SYMB_ZERO = SYMB_ZERO .AND.
  329:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  330: 
  331:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  332:                   END DO
  333:                END IF
  334: 
  335:                IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  336:      $              Y( IY ) + SIGN( SAFE1, Y( IY ) )
  337: 
  338:                IY = IY + INCY
  339:             END DO
  340:          END IF
  341:       ELSE
  342:          IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  343:             DO I = 1, LENY
  344:                IF ( BETA .EQ. 0.0D+0 ) THEN
  345:                   SYMB_ZERO = .TRUE.
  346:                   Y( IY ) = 0.0D+0
  347:                ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  348:                   SYMB_ZERO = .TRUE.
  349:                ELSE
  350:                   SYMB_ZERO = .FALSE.
  351:                   Y( IY ) = BETA * ABS( Y( IY ) )
  352:                END IF
  353:                IF ( ALPHA .NE. 0.0D+0 ) THEN
  354:                   JX = KX
  355:                   DO J = 1, LENX
  356:                      TEMP = CABS1( A( I, J ) )
  357:                      SYMB_ZERO = SYMB_ZERO .AND.
  358:      $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  359: 
  360:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  361:                      JX = JX + INCX
  362:                   END DO
  363:                END IF
  364: 
  365:                IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  366:      $              Y( IY ) + SIGN( SAFE1, Y( IY ) )
  367: 
  368:                IY = IY + INCY
  369:             END DO
  370:          ELSE
  371:             DO I = 1, LENY
  372:                IF ( BETA .EQ. 0.0D+0 ) THEN
  373:                   SYMB_ZERO = .TRUE.
  374:                   Y( IY ) = 0.0D+0
  375:                ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  376:                   SYMB_ZERO = .TRUE.
  377:                ELSE
  378:                   SYMB_ZERO = .FALSE.
  379:                   Y( IY ) = BETA * ABS( Y( IY ) )
  380:                END IF
  381:                IF ( ALPHA .NE. 0.0D+0 ) THEN
  382:                   JX = KX
  383:                   DO J = 1, LENX
  384:                      TEMP = CABS1( A( J, I ) )
  385:                      SYMB_ZERO = SYMB_ZERO .AND.
  386:      $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  387: 
  388:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  389:                      JX = JX + INCX
  390:                   END DO
  391:                END IF
  392: 
  393:                IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  394:      $              Y( IY ) + SIGN( SAFE1, Y( IY ) )
  395: 
  396:                IY = IY + INCY
  397:             END DO
  398:          END IF
  399: 
  400:       END IF
  401: *
  402:       RETURN
  403: *
  404: *     End of ZLA_GEAMV
  405: *
  406:       END

CVSweb interface <joel.bertrand@systella.fr>