File:  [local] / rpl / lapack / lapack / zla_geamv.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:04:07 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE ZLA_GEAMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
    2:      $                       Y, INCY )
    3: *
    4: *     -- LAPACK routine (version 3.2.2)                                 --
    5: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    6: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    7: *     -- June 2010                                                    --
    8: *
    9: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   10: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   11: *
   12:       IMPLICIT NONE
   13: *     ..
   14: *     .. Scalar Arguments ..
   15:       DOUBLE PRECISION   ALPHA, BETA
   16:       INTEGER            INCX, INCY, LDA, M, N
   17:       INTEGER            TRANS
   18: *     ..
   19: *     .. Array Arguments ..
   20:       COMPLEX*16         A( LDA, * ), X( * )
   21:       DOUBLE PRECISION   Y( * )
   22: *     ..
   23: *
   24: *  Purpose
   25: *  =======
   26: *
   27: *  ZLA_GEAMV  performs one of the matrix-vector operations
   28: *
   29: *          y := alpha*abs(A)*abs(x) + beta*abs(y),
   30: *     or   y := alpha*abs(A)'*abs(x) + beta*abs(y),
   31: *
   32: *  where alpha and beta are scalars, x and y are vectors and A is an
   33: *  m by n matrix.
   34: *
   35: *  This function is primarily used in calculating error bounds.
   36: *  To protect against underflow during evaluation, components in
   37: *  the resulting vector are perturbed away from zero by (N+1)
   38: *  times the underflow threshold.  To prevent unnecessarily large
   39: *  errors for block-structure embedded in general matrices,
   40: *  "symbolically" zero components are not perturbed.  A zero
   41: *  entry is considered "symbolic" if all multiplications involved
   42: *  in computing that entry have at least one zero multiplicand.
   43: *
   44: *  Arguments
   45: *  ==========
   46: *
   47: *  TRANS   (input) INTEGER
   48: *           On entry, TRANS specifies the operation to be performed as
   49: *           follows:
   50: *
   51: *             BLAS_NO_TRANS      y := alpha*abs(A)*abs(x) + beta*abs(y)
   52: *             BLAS_TRANS         y := alpha*abs(A')*abs(x) + beta*abs(y)
   53: *             BLAS_CONJ_TRANS    y := alpha*abs(A')*abs(x) + beta*abs(y)
   54: *
   55: *           Unchanged on exit.
   56: *
   57: *  M       (input) INTEGER
   58: *           On entry, M specifies the number of rows of the matrix A.
   59: *           M must be at least zero.
   60: *           Unchanged on exit.
   61: *
   62: *  N       (input) INTEGER
   63: *           On entry, N specifies the number of columns of the matrix A.
   64: *           N must be at least zero.
   65: *           Unchanged on exit.
   66: *
   67: *  ALPHA  - DOUBLE PRECISION
   68: *           On entry, ALPHA specifies the scalar alpha.
   69: *           Unchanged on exit.
   70: *
   71: *  A      - COMPLEX*16         array of DIMENSION ( LDA, n )
   72: *           Before entry, the leading m by n part of the array A must
   73: *           contain the matrix of coefficients.
   74: *           Unchanged on exit.
   75: *
   76: *  LDA     (input) INTEGER
   77: *           On entry, LDA specifies the first dimension of A as declared
   78: *           in the calling (sub) program. LDA must be at least
   79: *           max( 1, m ).
   80: *           Unchanged on exit.
   81: *
   82: *  X      - COMPLEX*16         array of DIMENSION at least
   83: *           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
   84: *           and at least
   85: *           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
   86: *           Before entry, the incremented array X must contain the
   87: *           vector x.
   88: *           Unchanged on exit.
   89: *
   90: *  INCX    (input) INTEGER
   91: *           On entry, INCX specifies the increment for the elements of
   92: *           X. INCX must not be zero.
   93: *           Unchanged on exit.
   94: *
   95: *  BETA   - DOUBLE PRECISION
   96: *           On entry, BETA specifies the scalar beta. When BETA is
   97: *           supplied as zero then Y need not be set on input.
   98: *           Unchanged on exit.
   99: *
  100: *  Y       (input/output) DOUBLE PRECISION  array, dimension
  101: *           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  102: *           and at least
  103: *           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  104: *           Before entry with BETA non-zero, the incremented array Y
  105: *           must contain the vector y. On exit, Y is overwritten by the
  106: *           updated vector y.
  107: *
  108: *  INCY    (input) INTEGER
  109: *           On entry, INCY specifies the increment for the elements of
  110: *           Y. INCY must not be zero.
  111: *           Unchanged on exit.
  112: *
  113: *
  114: *  Level 2 Blas routine.
  115: *
  116: *  =====================================================================
  117: *
  118: *     .. Parameters ..
  119:       COMPLEX*16         ONE, ZERO
  120:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  121: *     ..
  122: *     .. Local Scalars ..
  123:       LOGICAL            SYMB_ZERO
  124:       DOUBLE PRECISION   TEMP, SAFE1
  125:       INTEGER            I, INFO, IY, J, JX, KX, KY, LENX, LENY
  126:       COMPLEX*16         CDUM
  127: *     ..
  128: *     .. External Subroutines ..
  129:       EXTERNAL           XERBLA, DLAMCH
  130:       DOUBLE PRECISION   DLAMCH
  131: *     ..
  132: *     .. External Functions ..
  133:       EXTERNAL           ILATRANS
  134:       INTEGER            ILATRANS
  135: *     ..
  136: *     .. Intrinsic Functions ..
  137:       INTRINSIC          MAX, ABS, REAL, DIMAG, SIGN
  138: *     ..
  139: *     .. Statement Functions ..
  140:       DOUBLE PRECISION   CABS1
  141: *     ..
  142: *     .. Statement Function Definitions ..
  143:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  144: *     ..
  145: *     .. Executable Statements ..
  146: *
  147: *     Test the input parameters.
  148: *
  149:       INFO = 0
  150:       IF     ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) )
  151:      $           .OR. ( TRANS.EQ.ILATRANS( 'T' ) )
  152:      $           .OR. ( TRANS.EQ.ILATRANS( 'C' ) ) ) ) THEN
  153:          INFO = 1
  154:       ELSE IF( M.LT.0 )THEN
  155:          INFO = 2
  156:       ELSE IF( N.LT.0 )THEN
  157:          INFO = 3
  158:       ELSE IF( LDA.LT.MAX( 1, M ) )THEN
  159:          INFO = 6
  160:       ELSE IF( INCX.EQ.0 )THEN
  161:          INFO = 8
  162:       ELSE IF( INCY.EQ.0 )THEN
  163:          INFO = 11
  164:       END IF
  165:       IF( INFO.NE.0 )THEN
  166:          CALL XERBLA( 'ZLA_GEAMV ', INFO )
  167:          RETURN
  168:       END IF
  169: *
  170: *     Quick return if possible.
  171: *
  172:       IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  173:      $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  174:      $   RETURN
  175: *
  176: *     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
  177: *     up the start points in  X  and  Y.
  178: *
  179:       IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  180:          LENX = N
  181:          LENY = M
  182:       ELSE
  183:          LENX = M
  184:          LENY = N
  185:       END IF
  186:       IF( INCX.GT.0 )THEN
  187:          KX = 1
  188:       ELSE
  189:          KX = 1 - ( LENX - 1 )*INCX
  190:       END IF
  191:       IF( INCY.GT.0 )THEN
  192:          KY = 1
  193:       ELSE
  194:          KY = 1 - ( LENY - 1 )*INCY
  195:       END IF
  196: *
  197: *     Set SAFE1 essentially to be the underflow threshold times the
  198: *     number of additions in each row.
  199: *
  200:       SAFE1 = DLAMCH( 'Safe minimum' )
  201:       SAFE1 = (N+1)*SAFE1
  202: *
  203: *     Form  y := alpha*abs(A)*abs(x) + beta*abs(y).
  204: *
  205: *     The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
  206: *     the inexact flag.  Still doesn't help change the iteration order
  207: *     to per-column.
  208: *
  209:       IY = KY
  210:       IF ( INCX.EQ.1 ) THEN
  211:          IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  212:             DO I = 1, LENY
  213:                IF ( BETA .EQ. 0.0D+0 ) THEN
  214:                   SYMB_ZERO = .TRUE.
  215:                   Y( IY ) = 0.0D+0
  216:                ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  217:                   SYMB_ZERO = .TRUE.
  218:                ELSE
  219:                   SYMB_ZERO = .FALSE.
  220:                   Y( IY ) = BETA * ABS( Y( IY ) )
  221:                END IF
  222:                IF ( ALPHA .NE. 0.0D+0 ) THEN
  223:                   DO J = 1, LENX
  224:                      TEMP = CABS1( A( I, J ) )
  225:                      SYMB_ZERO = SYMB_ZERO .AND.
  226:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  227: 
  228:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  229:                   END DO
  230:                END IF
  231: 
  232:                IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  233:      $              Y( IY ) + SIGN( SAFE1, Y( IY ) )
  234: 
  235:                IY = IY + INCY
  236:             END DO
  237:          ELSE
  238:             DO I = 1, LENY
  239:                IF ( BETA .EQ. 0.0D+0 ) THEN
  240:                   SYMB_ZERO = .TRUE.
  241:                   Y( IY ) = 0.0D+0
  242:                ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  243:                   SYMB_ZERO = .TRUE.
  244:                ELSE
  245:                   SYMB_ZERO = .FALSE.
  246:                   Y( IY ) = BETA * ABS( Y( IY ) )
  247:                END IF
  248:                IF ( ALPHA .NE. 0.0D+0 ) THEN
  249:                   DO J = 1, LENX
  250:                      TEMP = CABS1( A( J, I ) )
  251:                      SYMB_ZERO = SYMB_ZERO .AND.
  252:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  253: 
  254:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  255:                   END DO
  256:                END IF
  257: 
  258:                IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  259:      $              Y( IY ) + SIGN( SAFE1, Y( IY ) )
  260: 
  261:                IY = IY + INCY
  262:             END DO
  263:          END IF
  264:       ELSE
  265:          IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  266:             DO I = 1, LENY
  267:                IF ( BETA .EQ. 0.0D+0 ) THEN
  268:                   SYMB_ZERO = .TRUE.
  269:                   Y( IY ) = 0.0D+0
  270:                ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  271:                   SYMB_ZERO = .TRUE.
  272:                ELSE
  273:                   SYMB_ZERO = .FALSE.
  274:                   Y( IY ) = BETA * ABS( Y( IY ) )
  275:                END IF
  276:                IF ( ALPHA .NE. 0.0D+0 ) THEN
  277:                   JX = KX
  278:                   DO J = 1, LENX
  279:                      TEMP = CABS1( A( I, J ) )
  280:                      SYMB_ZERO = SYMB_ZERO .AND.
  281:      $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  282: 
  283:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  284:                      JX = JX + INCX
  285:                   END DO
  286:                END IF
  287: 
  288:                IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  289:      $              Y( IY ) + SIGN( SAFE1, Y( IY ) )
  290: 
  291:                IY = IY + INCY
  292:             END DO
  293:          ELSE
  294:             DO I = 1, LENY
  295:                IF ( BETA .EQ. 0.0D+0 ) THEN
  296:                   SYMB_ZERO = .TRUE.
  297:                   Y( IY ) = 0.0D+0
  298:                ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  299:                   SYMB_ZERO = .TRUE.
  300:                ELSE
  301:                   SYMB_ZERO = .FALSE.
  302:                   Y( IY ) = BETA * ABS( Y( IY ) )
  303:                END IF
  304:                IF ( ALPHA .NE. 0.0D+0 ) THEN
  305:                   JX = KX
  306:                   DO J = 1, LENX
  307:                      TEMP = CABS1( A( J, I ) )
  308:                      SYMB_ZERO = SYMB_ZERO .AND.
  309:      $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  310: 
  311:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  312:                      JX = JX + INCX
  313:                   END DO
  314:                END IF
  315: 
  316:                IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  317:      $              Y( IY ) + SIGN( SAFE1, Y( IY ) )
  318: 
  319:                IY = IY + INCY
  320:             END DO
  321:          END IF
  322: 
  323:       END IF
  324: *
  325:       RETURN
  326: *
  327: *     End of ZLA_GEAMV
  328: *
  329:       END

CVSweb interface <joel.bertrand@systella.fr>