File:  [local] / rpl / lapack / lapack / zla_gbrfsx_extended.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Tue May 29 06:55:24 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLA_GBRFSX_EXTENDED improves the computed solution to a system of linear equations for general banded matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLA_GBRFSX_EXTENDED + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
   22: *                                       NRHS, AB, LDAB, AFB, LDAFB, IPIV,
   23: *                                       COLEQU, C, B, LDB, Y, LDY,
   24: *                                       BERR_OUT, N_NORMS, ERR_BNDS_NORM,
   25: *                                       ERR_BNDS_COMP, RES, AYB, DY,
   26: *                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
   27: *                                       DZ_UB, IGNORE_CWISE, INFO )
   28: *
   29: *       .. Scalar Arguments ..
   30: *       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
   31: *      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
   32: *       LOGICAL            COLEQU, IGNORE_CWISE
   33: *       DOUBLE PRECISION   RTHRESH, DZ_UB
   34: *       ..
   35: *       .. Array Arguments ..
   36: *       INTEGER            IPIV( * )
   37: *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   38: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
   39: *       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT( * ),
   40: *      $                   ERR_BNDS_NORM( NRHS, * ),
   41: *      $                   ERR_BNDS_COMP( NRHS, * )
   42: *       ..
   43: *
   44: *
   45: *> \par Purpose:
   46: *  =============
   47: *>
   48: *> \verbatim
   49: *>
   50: *> ZLA_GBRFSX_EXTENDED improves the computed solution to a system of
   51: *> linear equations by performing extra-precise iterative refinement
   52: *> and provides error bounds and backward error estimates for the solution.
   53: *> This subroutine is called by ZGBRFSX to perform iterative refinement.
   54: *> In addition to normwise error bound, the code provides maximum
   55: *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
   56: *> and ERR_BNDS_COMP for details of the error bounds. Note that this
   57: *> subroutine is only resonsible for setting the second fields of
   58: *> ERR_BNDS_NORM and ERR_BNDS_COMP.
   59: *> \endverbatim
   60: *
   61: *  Arguments:
   62: *  ==========
   63: *
   64: *> \param[in] PREC_TYPE
   65: *> \verbatim
   66: *>          PREC_TYPE is INTEGER
   67: *>     Specifies the intermediate precision to be used in refinement.
   68: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and
   69: *>     P    = 'S':  Single
   70: *>          = 'D':  Double
   71: *>          = 'I':  Indigenous
   72: *>          = 'X', 'E':  Extra
   73: *> \endverbatim
   74: *>
   75: *> \param[in] TRANS_TYPE
   76: *> \verbatim
   77: *>          TRANS_TYPE is INTEGER
   78: *>     Specifies the transposition operation on A.
   79: *>     The value is defined by ILATRANS(T) where T is a CHARACTER and
   80: *>     T    = 'N':  No transpose
   81: *>          = 'T':  Transpose
   82: *>          = 'C':  Conjugate transpose
   83: *> \endverbatim
   84: *>
   85: *> \param[in] N
   86: *> \verbatim
   87: *>          N is INTEGER
   88: *>     The number of linear equations, i.e., the order of the
   89: *>     matrix A.  N >= 0.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] KL
   93: *> \verbatim
   94: *>          KL is INTEGER
   95: *>     The number of subdiagonals within the band of A.  KL >= 0.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] KU
   99: *> \verbatim
  100: *>          KU is INTEGER
  101: *>     The number of superdiagonals within the band of A.  KU >= 0
  102: *> \endverbatim
  103: *>
  104: *> \param[in] NRHS
  105: *> \verbatim
  106: *>          NRHS is INTEGER
  107: *>     The number of right-hand-sides, i.e., the number of columns of the
  108: *>     matrix B.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] AB
  112: *> \verbatim
  113: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
  114: *>     On entry, the N-by-N matrix A.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] LDAB
  118: *> \verbatim
  119: *>          LDAB is INTEGER
  120: *>     The leading dimension of the array A.  LDAB >= max(1,N).
  121: *> \endverbatim
  122: *>
  123: *> \param[in] AFB
  124: *> \verbatim
  125: *>          AFB is COMPLEX*16 array, dimension (LDAF,N)
  126: *>     The factors L and U from the factorization
  127: *>     A = P*L*U as computed by ZGBTRF.
  128: *> \endverbatim
  129: *>
  130: *> \param[in] LDAFB
  131: *> \verbatim
  132: *>          LDAFB is INTEGER
  133: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  134: *> \endverbatim
  135: *>
  136: *> \param[in] IPIV
  137: *> \verbatim
  138: *>          IPIV is INTEGER array, dimension (N)
  139: *>     The pivot indices from the factorization A = P*L*U
  140: *>     as computed by ZGBTRF; row i of the matrix was interchanged
  141: *>     with row IPIV(i).
  142: *> \endverbatim
  143: *>
  144: *> \param[in] COLEQU
  145: *> \verbatim
  146: *>          COLEQU is LOGICAL
  147: *>     If .TRUE. then column equilibration was done to A before calling
  148: *>     this routine. This is needed to compute the solution and error
  149: *>     bounds correctly.
  150: *> \endverbatim
  151: *>
  152: *> \param[in] C
  153: *> \verbatim
  154: *>          C is DOUBLE PRECISION array, dimension (N)
  155: *>     The column scale factors for A. If COLEQU = .FALSE., C
  156: *>     is not accessed. If C is input, each element of C should be a power
  157: *>     of the radix to ensure a reliable solution and error estimates.
  158: *>     Scaling by powers of the radix does not cause rounding errors unless
  159: *>     the result underflows or overflows. Rounding errors during scaling
  160: *>     lead to refining with a matrix that is not equivalent to the
  161: *>     input matrix, producing error estimates that may not be
  162: *>     reliable.
  163: *> \endverbatim
  164: *>
  165: *> \param[in] B
  166: *> \verbatim
  167: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  168: *>     The right-hand-side matrix B.
  169: *> \endverbatim
  170: *>
  171: *> \param[in] LDB
  172: *> \verbatim
  173: *>          LDB is INTEGER
  174: *>     The leading dimension of the array B.  LDB >= max(1,N).
  175: *> \endverbatim
  176: *>
  177: *> \param[in,out] Y
  178: *> \verbatim
  179: *>          Y is COMPLEX*16 array, dimension (LDY,NRHS)
  180: *>     On entry, the solution matrix X, as computed by ZGBTRS.
  181: *>     On exit, the improved solution matrix Y.
  182: *> \endverbatim
  183: *>
  184: *> \param[in] LDY
  185: *> \verbatim
  186: *>          LDY is INTEGER
  187: *>     The leading dimension of the array Y.  LDY >= max(1,N).
  188: *> \endverbatim
  189: *>
  190: *> \param[out] BERR_OUT
  191: *> \verbatim
  192: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
  193: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
  194: *>     error for right-hand-side j from the formula
  195: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  196: *>     where abs(Z) is the componentwise absolute value of the matrix
  197: *>     or vector Z. This is computed by ZLA_LIN_BERR.
  198: *> \endverbatim
  199: *>
  200: *> \param[in] N_NORMS
  201: *> \verbatim
  202: *>          N_NORMS is INTEGER
  203: *>     Determines which error bounds to return (see ERR_BNDS_NORM
  204: *>     and ERR_BNDS_COMP).
  205: *>     If N_NORMS >= 1 return normwise error bounds.
  206: *>     If N_NORMS >= 2 return componentwise error bounds.
  207: *> \endverbatim
  208: *>
  209: *> \param[in,out] ERR_BNDS_NORM
  210: *> \verbatim
  211: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  212: *>     For each right-hand side, this array contains information about
  213: *>     various error bounds and condition numbers corresponding to the
  214: *>     normwise relative error, which is defined as follows:
  215: *>
  216: *>     Normwise relative error in the ith solution vector:
  217: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  218: *>            ------------------------------
  219: *>                  max_j abs(X(j,i))
  220: *>
  221: *>     The array is indexed by the type of error information as described
  222: *>     below. There currently are up to three pieces of information
  223: *>     returned.
  224: *>
  225: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  226: *>     right-hand side.
  227: *>
  228: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  229: *>     three fields:
  230: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  231: *>              reciprocal condition number is less than the threshold
  232: *>              sqrt(n) * slamch('Epsilon').
  233: *>
  234: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  235: *>              almost certainly within a factor of 10 of the true error
  236: *>              so long as the next entry is greater than the threshold
  237: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  238: *>              be trusted if the previous boolean is true.
  239: *>
  240: *>     err = 3  Reciprocal condition number: Estimated normwise
  241: *>              reciprocal condition number.  Compared with the threshold
  242: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  243: *>              estimate is "guaranteed". These reciprocal condition
  244: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  245: *>              appropriately scaled matrix Z.
  246: *>              Let Z = S*A, where S scales each row by a power of the
  247: *>              radix so all absolute row sums of Z are approximately 1.
  248: *>
  249: *>     This subroutine is only responsible for setting the second field
  250: *>     above.
  251: *>     See Lapack Working Note 165 for further details and extra
  252: *>     cautions.
  253: *> \endverbatim
  254: *>
  255: *> \param[in,out] ERR_BNDS_COMP
  256: *> \verbatim
  257: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  258: *>     For each right-hand side, this array contains information about
  259: *>     various error bounds and condition numbers corresponding to the
  260: *>     componentwise relative error, which is defined as follows:
  261: *>
  262: *>     Componentwise relative error in the ith solution vector:
  263: *>                    abs(XTRUE(j,i) - X(j,i))
  264: *>             max_j ----------------------
  265: *>                         abs(X(j,i))
  266: *>
  267: *>     The array is indexed by the right-hand side i (on which the
  268: *>     componentwise relative error depends), and the type of error
  269: *>     information as described below. There currently are up to three
  270: *>     pieces of information returned for each right-hand side. If
  271: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  272: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
  273: *>     the first (:,N_ERR_BNDS) entries are returned.
  274: *>
  275: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  276: *>     right-hand side.
  277: *>
  278: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  279: *>     three fields:
  280: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  281: *>              reciprocal condition number is less than the threshold
  282: *>              sqrt(n) * slamch('Epsilon').
  283: *>
  284: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  285: *>              almost certainly within a factor of 10 of the true error
  286: *>              so long as the next entry is greater than the threshold
  287: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  288: *>              be trusted if the previous boolean is true.
  289: *>
  290: *>     err = 3  Reciprocal condition number: Estimated componentwise
  291: *>              reciprocal condition number.  Compared with the threshold
  292: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  293: *>              estimate is "guaranteed". These reciprocal condition
  294: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  295: *>              appropriately scaled matrix Z.
  296: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  297: *>              current right-hand side and S scales each row of
  298: *>              A*diag(x) by a power of the radix so all absolute row
  299: *>              sums of Z are approximately 1.
  300: *>
  301: *>     This subroutine is only responsible for setting the second field
  302: *>     above.
  303: *>     See Lapack Working Note 165 for further details and extra
  304: *>     cautions.
  305: *> \endverbatim
  306: *>
  307: *> \param[in] RES
  308: *> \verbatim
  309: *>          RES is COMPLEX*16 array, dimension (N)
  310: *>     Workspace to hold the intermediate residual.
  311: *> \endverbatim
  312: *>
  313: *> \param[in] AYB
  314: *> \verbatim
  315: *>          AYB is DOUBLE PRECISION array, dimension (N)
  316: *>     Workspace.
  317: *> \endverbatim
  318: *>
  319: *> \param[in] DY
  320: *> \verbatim
  321: *>          DY is COMPLEX*16 array, dimension (N)
  322: *>     Workspace to hold the intermediate solution.
  323: *> \endverbatim
  324: *>
  325: *> \param[in] Y_TAIL
  326: *> \verbatim
  327: *>          Y_TAIL is COMPLEX*16 array, dimension (N)
  328: *>     Workspace to hold the trailing bits of the intermediate solution.
  329: *> \endverbatim
  330: *>
  331: *> \param[in] RCOND
  332: *> \verbatim
  333: *>          RCOND is DOUBLE PRECISION
  334: *>     Reciprocal scaled condition number.  This is an estimate of the
  335: *>     reciprocal Skeel condition number of the matrix A after
  336: *>     equilibration (if done).  If this is less than the machine
  337: *>     precision (in particular, if it is zero), the matrix is singular
  338: *>     to working precision.  Note that the error may still be small even
  339: *>     if this number is very small and the matrix appears ill-
  340: *>     conditioned.
  341: *> \endverbatim
  342: *>
  343: *> \param[in] ITHRESH
  344: *> \verbatim
  345: *>          ITHRESH is INTEGER
  346: *>     The maximum number of residual computations allowed for
  347: *>     refinement. The default is 10. For 'aggressive' set to 100 to
  348: *>     permit convergence using approximate factorizations or
  349: *>     factorizations other than LU. If the factorization uses a
  350: *>     technique other than Gaussian elimination, the guarantees in
  351: *>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
  352: *> \endverbatim
  353: *>
  354: *> \param[in] RTHRESH
  355: *> \verbatim
  356: *>          RTHRESH is DOUBLE PRECISION
  357: *>     Determines when to stop refinement if the error estimate stops
  358: *>     decreasing. Refinement will stop when the next solution no longer
  359: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  360: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  361: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
  362: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
  363: *>     for more details.
  364: *> \endverbatim
  365: *>
  366: *> \param[in] DZ_UB
  367: *> \verbatim
  368: *>          DZ_UB is DOUBLE PRECISION
  369: *>     Determines when to start considering componentwise convergence.
  370: *>     Componentwise convergence is only considered after each component
  371: *>     of the solution Y is stable, which we definte as the relative
  372: *>     change in each component being less than DZ_UB. The default value
  373: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
  374: *>     more details.
  375: *> \endverbatim
  376: *>
  377: *> \param[in] IGNORE_CWISE
  378: *> \verbatim
  379: *>          IGNORE_CWISE is LOGICAL
  380: *>     If .TRUE. then ignore componentwise convergence. Default value
  381: *>     is .FALSE..
  382: *> \endverbatim
  383: *>
  384: *> \param[out] INFO
  385: *> \verbatim
  386: *>          INFO is INTEGER
  387: *>       = 0:  Successful exit.
  388: *>       < 0:  if INFO = -i, the ith argument to ZGBTRS had an illegal
  389: *>             value
  390: *> \endverbatim
  391: *
  392: *  Authors:
  393: *  ========
  394: *
  395: *> \author Univ. of Tennessee
  396: *> \author Univ. of California Berkeley
  397: *> \author Univ. of Colorado Denver
  398: *> \author NAG Ltd.
  399: *
  400: *> \date June 2017
  401: *
  402: *> \ingroup complex16GBcomputational
  403: *
  404: *  =====================================================================
  405:       SUBROUTINE ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
  406:      $                                NRHS, AB, LDAB, AFB, LDAFB, IPIV,
  407:      $                                COLEQU, C, B, LDB, Y, LDY,
  408:      $                                BERR_OUT, N_NORMS, ERR_BNDS_NORM,
  409:      $                                ERR_BNDS_COMP, RES, AYB, DY,
  410:      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
  411:      $                                DZ_UB, IGNORE_CWISE, INFO )
  412: *
  413: *  -- LAPACK computational routine (version 3.7.1) --
  414: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  415: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  416: *     June 2017
  417: *
  418: *     .. Scalar Arguments ..
  419:       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
  420:      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
  421:       LOGICAL            COLEQU, IGNORE_CWISE
  422:       DOUBLE PRECISION   RTHRESH, DZ_UB
  423: *     ..
  424: *     .. Array Arguments ..
  425:       INTEGER            IPIV( * )
  426:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  427:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  428:       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT( * ),
  429:      $                   ERR_BNDS_NORM( NRHS, * ),
  430:      $                   ERR_BNDS_COMP( NRHS, * )
  431: *     ..
  432: *
  433: *  =====================================================================
  434: *
  435: *     .. Local Scalars ..
  436:       CHARACTER          TRANS
  437:       INTEGER            CNT, I, J, M, X_STATE, Z_STATE, Y_PREC_STATE
  438:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  439:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  440:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  441:      $                   EPS, HUGEVAL, INCR_THRESH
  442:       LOGICAL            INCR_PREC
  443:       COMPLEX*16         ZDUM
  444: *     ..
  445: *     .. Parameters ..
  446:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  447:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
  448:      $                   EXTRA_Y
  449:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  450:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
  451:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  452:      $                   EXTRA_Y = 2 )
  453:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  454:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  455:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  456:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  457:      $                   BERR_I = 3 )
  458:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  459:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  460:      $                   PIV_GROWTH_I = 9 )
  461:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  462:      $                   LA_LINRX_CWISE_I
  463:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  464:      $                   LA_LINRX_ITHRESH_I = 2 )
  465:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  466:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  467:      $                   LA_LINRX_RCOND_I
  468:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  469:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  470: *     ..
  471: *     .. External Subroutines ..
  472:       EXTERNAL           ZAXPY, ZCOPY, ZGBTRS, ZGBMV, BLAS_ZGBMV_X,
  473:      $                   BLAS_ZGBMV2_X, ZLA_GBAMV, ZLA_WWADDW, DLAMCH,
  474:      $                   CHLA_TRANSTYPE, ZLA_LIN_BERR
  475:       DOUBLE PRECISION   DLAMCH
  476:       CHARACTER          CHLA_TRANSTYPE
  477: *     ..
  478: *     .. Intrinsic Functions..
  479:       INTRINSIC          ABS, MAX, MIN
  480: *     ..
  481: *     .. Statement Functions ..
  482:       DOUBLE PRECISION   CABS1
  483: *     ..
  484: *     .. Statement Function Definitions ..
  485:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  486: *     ..
  487: *     .. Executable Statements ..
  488: *
  489:       IF (INFO.NE.0) RETURN
  490:       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
  491:       EPS = DLAMCH( 'Epsilon' )
  492:       HUGEVAL = DLAMCH( 'Overflow' )
  493: *     Force HUGEVAL to Inf
  494:       HUGEVAL = HUGEVAL * HUGEVAL
  495: *     Using HUGEVAL may lead to spurious underflows.
  496:       INCR_THRESH = DBLE( N ) * EPS
  497:       M = KL+KU+1
  498: 
  499:       DO J = 1, NRHS
  500:          Y_PREC_STATE = EXTRA_RESIDUAL
  501:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  502:             DO I = 1, N
  503:                Y_TAIL( I ) = 0.0D+0
  504:             END DO
  505:          END IF
  506: 
  507:          DXRAT = 0.0D+0
  508:          DXRATMAX = 0.0D+0
  509:          DZRAT = 0.0D+0
  510:          DZRATMAX = 0.0D+0
  511:          FINAL_DX_X = HUGEVAL
  512:          FINAL_DZ_Z = HUGEVAL
  513:          PREVNORMDX = HUGEVAL
  514:          PREV_DZ_Z = HUGEVAL
  515:          DZ_Z = HUGEVAL
  516:          DX_X = HUGEVAL
  517: 
  518:          X_STATE = WORKING_STATE
  519:          Z_STATE = UNSTABLE_STATE
  520:          INCR_PREC = .FALSE.
  521: 
  522:          DO CNT = 1, ITHRESH
  523: *
  524: *        Compute residual RES = B_s - op(A_s) * Y,
  525: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
  526: *
  527:             CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
  528:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
  529:                CALL ZGBMV( TRANS, M, N, KL, KU, (-1.0D+0,0.0D+0), AB,
  530:      $              LDAB, Y( 1, J ), 1, (1.0D+0,0.0D+0), RES, 1 )
  531:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
  532:                CALL BLAS_ZGBMV_X( TRANS_TYPE, N, N, KL, KU,
  533:      $              (-1.0D+0,0.0D+0), AB, LDAB, Y( 1, J ), 1,
  534:      $              (1.0D+0,0.0D+0), RES, 1, PREC_TYPE )
  535:             ELSE
  536:                CALL BLAS_ZGBMV2_X( TRANS_TYPE, N, N, KL, KU,
  537:      $              (-1.0D+0,0.0D+0), AB, LDAB, Y( 1, J ), Y_TAIL, 1,
  538:      $              (1.0D+0,0.0D+0), RES, 1, PREC_TYPE )
  539:             END IF
  540: 
  541: !        XXX: RES is no longer needed.
  542:             CALL ZCOPY( N, RES, 1, DY, 1 )
  543:             CALL ZGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, DY, N,
  544:      $           INFO )
  545: *
  546: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  547: *
  548:             NORMX = 0.0D+0
  549:             NORMY = 0.0D+0
  550:             NORMDX = 0.0D+0
  551:             DZ_Z = 0.0D+0
  552:             YMIN = HUGEVAL
  553: 
  554:             DO I = 1, N
  555:                YK = CABS1( Y( I, J ) )
  556:                DYK = CABS1( DY( I ) )
  557: 
  558:                IF (YK .NE. 0.0D+0) THEN
  559:                   DZ_Z = MAX( DZ_Z, DYK / YK )
  560:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  561:                   DZ_Z = HUGEVAL
  562:                END IF
  563: 
  564:                YMIN = MIN( YMIN, YK )
  565: 
  566:                NORMY = MAX( NORMY, YK )
  567: 
  568:                IF ( COLEQU ) THEN
  569:                   NORMX = MAX( NORMX, YK * C( I ) )
  570:                   NORMDX = MAX(NORMDX, DYK * C(I))
  571:                ELSE
  572:                   NORMX = NORMY
  573:                   NORMDX = MAX( NORMDX, DYK )
  574:                END IF
  575:             END DO
  576: 
  577:             IF ( NORMX .NE. 0.0D+0 ) THEN
  578:                DX_X = NORMDX / NORMX
  579:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  580:                DX_X = 0.0D+0
  581:             ELSE
  582:                DX_X = HUGEVAL
  583:             END IF
  584: 
  585:             DXRAT = NORMDX / PREVNORMDX
  586:             DZRAT = DZ_Z / PREV_DZ_Z
  587: *
  588: *         Check termination criteria.
  589: *
  590:             IF (.NOT.IGNORE_CWISE
  591:      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
  592:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
  593:      $           INCR_PREC = .TRUE.
  594: 
  595:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  596:      $           X_STATE = WORKING_STATE
  597:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
  598:                IF ( DX_X .LE. EPS ) THEN
  599:                   X_STATE = CONV_STATE
  600:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  601:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  602:                      INCR_PREC = .TRUE.
  603:                   ELSE
  604:                      X_STATE = NOPROG_STATE
  605:                   END IF
  606:                ELSE
  607:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
  608:                END IF
  609:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  610:             END IF
  611: 
  612:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  613:      $           Z_STATE = WORKING_STATE
  614:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  615:      $           Z_STATE = WORKING_STATE
  616:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  617:                IF ( DZ_Z .LE. EPS ) THEN
  618:                   Z_STATE = CONV_STATE
  619:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  620:                   Z_STATE = UNSTABLE_STATE
  621:                   DZRATMAX = 0.0D+0
  622:                   FINAL_DZ_Z = HUGEVAL
  623:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  624:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  625:                      INCR_PREC = .TRUE.
  626:                   ELSE
  627:                      Z_STATE = NOPROG_STATE
  628:                   END IF
  629:                ELSE
  630:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  631:                END IF
  632:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  633:             END IF
  634: *
  635: *           Exit if both normwise and componentwise stopped working,
  636: *           but if componentwise is unstable, let it go at least two
  637: *           iterations.
  638: *
  639:             IF ( X_STATE.NE.WORKING_STATE ) THEN
  640:                IF ( IGNORE_CWISE ) GOTO 666
  641:                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
  642:      $              GOTO 666
  643:                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
  644:             END IF
  645: 
  646:             IF ( INCR_PREC ) THEN
  647:                INCR_PREC = .FALSE.
  648:                Y_PREC_STATE = Y_PREC_STATE + 1
  649:                DO I = 1, N
  650:                   Y_TAIL( I ) = 0.0D+0
  651:                END DO
  652:             END IF
  653: 
  654:             PREVNORMDX = NORMDX
  655:             PREV_DZ_Z = DZ_Z
  656: *
  657: *           Update soluton.
  658: *
  659:             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
  660:                CALL ZAXPY( N, (1.0D+0,0.0D+0), DY, 1, Y(1,J), 1 )
  661:             ELSE
  662:                CALL ZLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
  663:             END IF
  664: 
  665:          END DO
  666: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
  667:  666     CONTINUE
  668: *
  669: *     Set final_* when cnt hits ithresh.
  670: *
  671:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  672:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  673: *
  674: *     Compute error bounds.
  675: *
  676:          IF ( N_NORMS .GE. 1 ) THEN
  677:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
  678:      $           FINAL_DX_X / (1 - DXRATMAX)
  679:          END IF
  680:          IF ( N_NORMS .GE. 2 ) THEN
  681:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
  682:      $           FINAL_DZ_Z / (1 - DZRATMAX)
  683:          END IF
  684: *
  685: *     Compute componentwise relative backward error from formula
  686: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  687: *     where abs(Z) is the componentwise absolute value of the matrix
  688: *     or vector Z.
  689: *
  690: *        Compute residual RES = B_s - op(A_s) * Y,
  691: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
  692: *
  693:          CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
  694:          CALL ZGBMV( TRANS, N, N, KL, KU, (-1.0D+0,0.0D+0), AB, LDAB,
  695:      $        Y(1,J), 1, (1.0D+0,0.0D+0), RES, 1 )
  696: 
  697:          DO I = 1, N
  698:             AYB( I ) = CABS1( B( I, J ) )
  699:          END DO
  700: *
  701: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
  702: *
  703:         CALL ZLA_GBAMV( TRANS_TYPE, N, N, KL, KU, 1.0D+0,
  704:      $        AB, LDAB, Y(1, J), 1, 1.0D+0, AYB, 1 )
  705: 
  706:          CALL ZLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
  707: *
  708: *     End of loop for each RHS.
  709: *
  710:       END DO
  711: *
  712:       RETURN
  713:       END

CVSweb interface <joel.bertrand@systella.fr>