File:  [local] / rpl / lapack / lapack / zla_gbrfsx_extended.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:54:17 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b ZLA_GBRFSX_EXTENDED improves the computed solution to a system of linear equations for general banded matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLA_GBRFSX_EXTENDED + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
   22: *                                       NRHS, AB, LDAB, AFB, LDAFB, IPIV,
   23: *                                       COLEQU, C, B, LDB, Y, LDY,
   24: *                                       BERR_OUT, N_NORMS, ERR_BNDS_NORM,
   25: *                                       ERR_BNDS_COMP, RES, AYB, DY,
   26: *                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
   27: *                                       DZ_UB, IGNORE_CWISE, INFO )
   28: *
   29: *       .. Scalar Arguments ..
   30: *       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
   31: *      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
   32: *       LOGICAL            COLEQU, IGNORE_CWISE
   33: *       DOUBLE PRECISION   RTHRESH, DZ_UB
   34: *       ..
   35: *       .. Array Arguments ..
   36: *       INTEGER            IPIV( * )
   37: *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   38: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
   39: *       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT( * ),
   40: *      $                   ERR_BNDS_NORM( NRHS, * ),
   41: *      $                   ERR_BNDS_COMP( NRHS, * )
   42: *       ..
   43: *
   44: *
   45: *> \par Purpose:
   46: *  =============
   47: *>
   48: *> \verbatim
   49: *>
   50: *> ZLA_GBRFSX_EXTENDED improves the computed solution to a system of
   51: *> linear equations by performing extra-precise iterative refinement
   52: *> and provides error bounds and backward error estimates for the solution.
   53: *> This subroutine is called by ZGBRFSX to perform iterative refinement.
   54: *> In addition to normwise error bound, the code provides maximum
   55: *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
   56: *> and ERR_BNDS_COMP for details of the error bounds. Note that this
   57: *> subroutine is only resonsible for setting the second fields of
   58: *> ERR_BNDS_NORM and ERR_BNDS_COMP.
   59: *> \endverbatim
   60: *
   61: *  Arguments:
   62: *  ==========
   63: *
   64: *> \param[in] PREC_TYPE
   65: *> \verbatim
   66: *>          PREC_TYPE is INTEGER
   67: *>     Specifies the intermediate precision to be used in refinement.
   68: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and
   69: *>     P    = 'S':  Single
   70: *>          = 'D':  Double
   71: *>          = 'I':  Indigenous
   72: *>          = 'X', 'E':  Extra
   73: *> \endverbatim
   74: *>
   75: *> \param[in] TRANS_TYPE
   76: *> \verbatim
   77: *>          TRANS_TYPE is INTEGER
   78: *>     Specifies the transposition operation on A.
   79: *>     The value is defined by ILATRANS(T) where T is a CHARACTER and
   80: *>     T    = 'N':  No transpose
   81: *>          = 'T':  Transpose
   82: *>          = 'C':  Conjugate transpose
   83: *> \endverbatim
   84: *>
   85: *> \param[in] N
   86: *> \verbatim
   87: *>          N is INTEGER
   88: *>     The number of linear equations, i.e., the order of the
   89: *>     matrix A.  N >= 0.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] KL
   93: *> \verbatim
   94: *>          KL is INTEGER
   95: *>     The number of subdiagonals within the band of A.  KL >= 0.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] KU
   99: *> \verbatim
  100: *>          KU is INTEGER
  101: *>     The number of superdiagonals within the band of A.  KU >= 0
  102: *> \endverbatim
  103: *>
  104: *> \param[in] NRHS
  105: *> \verbatim
  106: *>          NRHS is INTEGER
  107: *>     The number of right-hand-sides, i.e., the number of columns of the
  108: *>     matrix B.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] AB
  112: *> \verbatim
  113: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
  114: *>     On entry, the N-by-N matrix A.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] LDAB
  118: *> \verbatim
  119: *>          LDAB is INTEGER
  120: *>     The leading dimension of the array A.  LDAB >= max(1,N).
  121: *> \endverbatim
  122: *>
  123: *> \param[in] AFB
  124: *> \verbatim
  125: *>          AFB is COMPLEX*16 array, dimension (LDAF,N)
  126: *>     The factors L and U from the factorization
  127: *>     A = P*L*U as computed by ZGBTRF.
  128: *> \endverbatim
  129: *>
  130: *> \param[in] LDAFB
  131: *> \verbatim
  132: *>          LDAFB is INTEGER
  133: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  134: *> \endverbatim
  135: *>
  136: *> \param[in] IPIV
  137: *> \verbatim
  138: *>          IPIV is INTEGER array, dimension (N)
  139: *>     The pivot indices from the factorization A = P*L*U
  140: *>     as computed by ZGBTRF; row i of the matrix was interchanged
  141: *>     with row IPIV(i).
  142: *> \endverbatim
  143: *>
  144: *> \param[in] COLEQU
  145: *> \verbatim
  146: *>          COLEQU is LOGICAL
  147: *>     If .TRUE. then column equilibration was done to A before calling
  148: *>     this routine. This is needed to compute the solution and error
  149: *>     bounds correctly.
  150: *> \endverbatim
  151: *>
  152: *> \param[in] C
  153: *> \verbatim
  154: *>          C is DOUBLE PRECISION array, dimension (N)
  155: *>     The column scale factors for A. If COLEQU = .FALSE., C
  156: *>     is not accessed. If C is input, each element of C should be a power
  157: *>     of the radix to ensure a reliable solution and error estimates.
  158: *>     Scaling by powers of the radix does not cause rounding errors unless
  159: *>     the result underflows or overflows. Rounding errors during scaling
  160: *>     lead to refining with a matrix that is not equivalent to the
  161: *>     input matrix, producing error estimates that may not be
  162: *>     reliable.
  163: *> \endverbatim
  164: *>
  165: *> \param[in] B
  166: *> \verbatim
  167: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  168: *>     The right-hand-side matrix B.
  169: *> \endverbatim
  170: *>
  171: *> \param[in] LDB
  172: *> \verbatim
  173: *>          LDB is INTEGER
  174: *>     The leading dimension of the array B.  LDB >= max(1,N).
  175: *> \endverbatim
  176: *>
  177: *> \param[in,out] Y
  178: *> \verbatim
  179: *>          Y is COMPLEX*16 array, dimension (LDY,NRHS)
  180: *>     On entry, the solution matrix X, as computed by ZGBTRS.
  181: *>     On exit, the improved solution matrix Y.
  182: *> \endverbatim
  183: *>
  184: *> \param[in] LDY
  185: *> \verbatim
  186: *>          LDY is INTEGER
  187: *>     The leading dimension of the array Y.  LDY >= max(1,N).
  188: *> \endverbatim
  189: *>
  190: *> \param[out] BERR_OUT
  191: *> \verbatim
  192: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
  193: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
  194: *>     error for right-hand-side j from the formula
  195: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  196: *>     where abs(Z) is the componentwise absolute value of the matrix
  197: *>     or vector Z. This is computed by ZLA_LIN_BERR.
  198: *> \endverbatim
  199: *>
  200: *> \param[in] N_NORMS
  201: *> \verbatim
  202: *>          N_NORMS is INTEGER
  203: *>     Determines which error bounds to return (see ERR_BNDS_NORM
  204: *>     and ERR_BNDS_COMP).
  205: *>     If N_NORMS >= 1 return normwise error bounds.
  206: *>     If N_NORMS >= 2 return componentwise error bounds.
  207: *> \endverbatim
  208: *>
  209: *> \param[in,out] ERR_BNDS_NORM
  210: *> \verbatim
  211: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension
  212: *>                    (NRHS, N_ERR_BNDS)
  213: *>     For each right-hand side, this array contains information about
  214: *>     various error bounds and condition numbers corresponding to the
  215: *>     normwise relative error, which is defined as follows:
  216: *>
  217: *>     Normwise relative error in the ith solution vector:
  218: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  219: *>            ------------------------------
  220: *>                  max_j abs(X(j,i))
  221: *>
  222: *>     The array is indexed by the type of error information as described
  223: *>     below. There currently are up to three pieces of information
  224: *>     returned.
  225: *>
  226: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  227: *>     right-hand side.
  228: *>
  229: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  230: *>     three fields:
  231: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  232: *>              reciprocal condition number is less than the threshold
  233: *>              sqrt(n) * slamch('Epsilon').
  234: *>
  235: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  236: *>              almost certainly within a factor of 10 of the true error
  237: *>              so long as the next entry is greater than the threshold
  238: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  239: *>              be trusted if the previous boolean is true.
  240: *>
  241: *>     err = 3  Reciprocal condition number: Estimated normwise
  242: *>              reciprocal condition number.  Compared with the threshold
  243: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  244: *>              estimate is "guaranteed". These reciprocal condition
  245: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  246: *>              appropriately scaled matrix Z.
  247: *>              Let Z = S*A, where S scales each row by a power of the
  248: *>              radix so all absolute row sums of Z are approximately 1.
  249: *>
  250: *>     This subroutine is only responsible for setting the second field
  251: *>     above.
  252: *>     See Lapack Working Note 165 for further details and extra
  253: *>     cautions.
  254: *> \endverbatim
  255: *>
  256: *> \param[in,out] ERR_BNDS_COMP
  257: *> \verbatim
  258: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension
  259: *>                    (NRHS, N_ERR_BNDS)
  260: *>     For each right-hand side, this array contains information about
  261: *>     various error bounds and condition numbers corresponding to the
  262: *>     componentwise relative error, which is defined as follows:
  263: *>
  264: *>     Componentwise relative error in the ith solution vector:
  265: *>                    abs(XTRUE(j,i) - X(j,i))
  266: *>             max_j ----------------------
  267: *>                         abs(X(j,i))
  268: *>
  269: *>     The array is indexed by the right-hand side i (on which the
  270: *>     componentwise relative error depends), and the type of error
  271: *>     information as described below. There currently are up to three
  272: *>     pieces of information returned for each right-hand side. If
  273: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  274: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
  275: *>     the first (:,N_ERR_BNDS) entries are returned.
  276: *>
  277: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  278: *>     right-hand side.
  279: *>
  280: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  281: *>     three fields:
  282: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  283: *>              reciprocal condition number is less than the threshold
  284: *>              sqrt(n) * slamch('Epsilon').
  285: *>
  286: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  287: *>              almost certainly within a factor of 10 of the true error
  288: *>              so long as the next entry is greater than the threshold
  289: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  290: *>              be trusted if the previous boolean is true.
  291: *>
  292: *>     err = 3  Reciprocal condition number: Estimated componentwise
  293: *>              reciprocal condition number.  Compared with the threshold
  294: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  295: *>              estimate is "guaranteed". These reciprocal condition
  296: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  297: *>              appropriately scaled matrix Z.
  298: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  299: *>              current right-hand side and S scales each row of
  300: *>              A*diag(x) by a power of the radix so all absolute row
  301: *>              sums of Z are approximately 1.
  302: *>
  303: *>     This subroutine is only responsible for setting the second field
  304: *>     above.
  305: *>     See Lapack Working Note 165 for further details and extra
  306: *>     cautions.
  307: *> \endverbatim
  308: *>
  309: *> \param[in] RES
  310: *> \verbatim
  311: *>          RES is COMPLEX*16 array, dimension (N)
  312: *>     Workspace to hold the intermediate residual.
  313: *> \endverbatim
  314: *>
  315: *> \param[in] AYB
  316: *> \verbatim
  317: *>          AYB is DOUBLE PRECISION array, dimension (N)
  318: *>     Workspace.
  319: *> \endverbatim
  320: *>
  321: *> \param[in] DY
  322: *> \verbatim
  323: *>          DY is COMPLEX*16 array, dimension (N)
  324: *>     Workspace to hold the intermediate solution.
  325: *> \endverbatim
  326: *>
  327: *> \param[in] Y_TAIL
  328: *> \verbatim
  329: *>          Y_TAIL is COMPLEX*16 array, dimension (N)
  330: *>     Workspace to hold the trailing bits of the intermediate solution.
  331: *> \endverbatim
  332: *>
  333: *> \param[in] RCOND
  334: *> \verbatim
  335: *>          RCOND is DOUBLE PRECISION
  336: *>     Reciprocal scaled condition number.  This is an estimate of the
  337: *>     reciprocal Skeel condition number of the matrix A after
  338: *>     equilibration (if done).  If this is less than the machine
  339: *>     precision (in particular, if it is zero), the matrix is singular
  340: *>     to working precision.  Note that the error may still be small even
  341: *>     if this number is very small and the matrix appears ill-
  342: *>     conditioned.
  343: *> \endverbatim
  344: *>
  345: *> \param[in] ITHRESH
  346: *> \verbatim
  347: *>          ITHRESH is INTEGER
  348: *>     The maximum number of residual computations allowed for
  349: *>     refinement. The default is 10. For 'aggressive' set to 100 to
  350: *>     permit convergence using approximate factorizations or
  351: *>     factorizations other than LU. If the factorization uses a
  352: *>     technique other than Gaussian elimination, the guarantees in
  353: *>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
  354: *> \endverbatim
  355: *>
  356: *> \param[in] RTHRESH
  357: *> \verbatim
  358: *>          RTHRESH is DOUBLE PRECISION
  359: *>     Determines when to stop refinement if the error estimate stops
  360: *>     decreasing. Refinement will stop when the next solution no longer
  361: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  362: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  363: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
  364: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
  365: *>     for more details.
  366: *> \endverbatim
  367: *>
  368: *> \param[in] DZ_UB
  369: *> \verbatim
  370: *>          DZ_UB is DOUBLE PRECISION
  371: *>     Determines when to start considering componentwise convergence.
  372: *>     Componentwise convergence is only considered after each component
  373: *>     of the solution Y is stable, which we definte as the relative
  374: *>     change in each component being less than DZ_UB. The default value
  375: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
  376: *>     more details.
  377: *> \endverbatim
  378: *>
  379: *> \param[in] IGNORE_CWISE
  380: *> \verbatim
  381: *>          IGNORE_CWISE is LOGICAL
  382: *>     If .TRUE. then ignore componentwise convergence. Default value
  383: *>     is .FALSE..
  384: *> \endverbatim
  385: *>
  386: *> \param[out] INFO
  387: *> \verbatim
  388: *>          INFO is INTEGER
  389: *>       = 0:  Successful exit.
  390: *>       < 0:  if INFO = -i, the ith argument to ZGBTRS had an illegal
  391: *>             value
  392: *> \endverbatim
  393: *
  394: *  Authors:
  395: *  ========
  396: *
  397: *> \author Univ. of Tennessee
  398: *> \author Univ. of California Berkeley
  399: *> \author Univ. of Colorado Denver
  400: *> \author NAG Ltd.
  401: *
  402: *> \date December 2016
  403: *
  404: *> \ingroup complex16GBcomputational
  405: *
  406: *  =====================================================================
  407:       SUBROUTINE ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
  408:      $                                NRHS, AB, LDAB, AFB, LDAFB, IPIV,
  409:      $                                COLEQU, C, B, LDB, Y, LDY,
  410:      $                                BERR_OUT, N_NORMS, ERR_BNDS_NORM,
  411:      $                                ERR_BNDS_COMP, RES, AYB, DY,
  412:      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
  413:      $                                DZ_UB, IGNORE_CWISE, INFO )
  414: *
  415: *  -- LAPACK computational routine (version 3.7.0) --
  416: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  417: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  418: *     December 2016
  419: *
  420: *     .. Scalar Arguments ..
  421:       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
  422:      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
  423:       LOGICAL            COLEQU, IGNORE_CWISE
  424:       DOUBLE PRECISION   RTHRESH, DZ_UB
  425: *     ..
  426: *     .. Array Arguments ..
  427:       INTEGER            IPIV( * )
  428:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  429:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  430:       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT( * ),
  431:      $                   ERR_BNDS_NORM( NRHS, * ),
  432:      $                   ERR_BNDS_COMP( NRHS, * )
  433: *     ..
  434: *
  435: *  =====================================================================
  436: *
  437: *     .. Local Scalars ..
  438:       CHARACTER          TRANS
  439:       INTEGER            CNT, I, J, M, X_STATE, Z_STATE, Y_PREC_STATE
  440:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  441:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  442:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  443:      $                   EPS, HUGEVAL, INCR_THRESH
  444:       LOGICAL            INCR_PREC
  445:       COMPLEX*16         ZDUM
  446: *     ..
  447: *     .. Parameters ..
  448:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  449:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
  450:      $                   EXTRA_Y
  451:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  452:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
  453:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  454:      $                   EXTRA_Y = 2 )
  455:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  456:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  457:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  458:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  459:      $                   BERR_I = 3 )
  460:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  461:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  462:      $                   PIV_GROWTH_I = 9 )
  463:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  464:      $                   LA_LINRX_CWISE_I
  465:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  466:      $                   LA_LINRX_ITHRESH_I = 2 )
  467:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  468:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  469:      $                   LA_LINRX_RCOND_I
  470:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  471:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  472: *     ..
  473: *     .. External Subroutines ..
  474:       EXTERNAL           ZAXPY, ZCOPY, ZGBTRS, ZGBMV, BLAS_ZGBMV_X,
  475:      $                   BLAS_ZGBMV2_X, ZLA_GBAMV, ZLA_WWADDW, DLAMCH,
  476:      $                   CHLA_TRANSTYPE, ZLA_LIN_BERR
  477:       DOUBLE PRECISION   DLAMCH
  478:       CHARACTER          CHLA_TRANSTYPE
  479: *     ..
  480: *     .. Intrinsic Functions..
  481:       INTRINSIC          ABS, MAX, MIN
  482: *     ..
  483: *     .. Statement Functions ..
  484:       DOUBLE PRECISION   CABS1
  485: *     ..
  486: *     .. Statement Function Definitions ..
  487:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  488: *     ..
  489: *     .. Executable Statements ..
  490: *
  491:       IF (INFO.NE.0) RETURN
  492:       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
  493:       EPS = DLAMCH( 'Epsilon' )
  494:       HUGEVAL = DLAMCH( 'Overflow' )
  495: *     Force HUGEVAL to Inf
  496:       HUGEVAL = HUGEVAL * HUGEVAL
  497: *     Using HUGEVAL may lead to spurious underflows.
  498:       INCR_THRESH = DBLE( N ) * EPS
  499:       M = KL+KU+1
  500: 
  501:       DO J = 1, NRHS
  502:          Y_PREC_STATE = EXTRA_RESIDUAL
  503:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  504:             DO I = 1, N
  505:                Y_TAIL( I ) = 0.0D+0
  506:             END DO
  507:          END IF
  508: 
  509:          DXRAT = 0.0D+0
  510:          DXRATMAX = 0.0D+0
  511:          DZRAT = 0.0D+0
  512:          DZRATMAX = 0.0D+0
  513:          FINAL_DX_X = HUGEVAL
  514:          FINAL_DZ_Z = HUGEVAL
  515:          PREVNORMDX = HUGEVAL
  516:          PREV_DZ_Z = HUGEVAL
  517:          DZ_Z = HUGEVAL
  518:          DX_X = HUGEVAL
  519: 
  520:          X_STATE = WORKING_STATE
  521:          Z_STATE = UNSTABLE_STATE
  522:          INCR_PREC = .FALSE.
  523: 
  524:          DO CNT = 1, ITHRESH
  525: *
  526: *        Compute residual RES = B_s - op(A_s) * Y,
  527: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
  528: *
  529:             CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
  530:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
  531:                CALL ZGBMV( TRANS, M, N, KL, KU, (-1.0D+0,0.0D+0), AB,
  532:      $              LDAB, Y( 1, J ), 1, (1.0D+0,0.0D+0), RES, 1 )
  533:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
  534:                CALL BLAS_ZGBMV_X( TRANS_TYPE, N, N, KL, KU,
  535:      $              (-1.0D+0,0.0D+0), AB, LDAB, Y( 1, J ), 1,
  536:      $              (1.0D+0,0.0D+0), RES, 1, PREC_TYPE )
  537:             ELSE
  538:                CALL BLAS_ZGBMV2_X( TRANS_TYPE, N, N, KL, KU,
  539:      $              (-1.0D+0,0.0D+0), AB, LDAB, Y( 1, J ), Y_TAIL, 1,
  540:      $              (1.0D+0,0.0D+0), RES, 1, PREC_TYPE )
  541:             END IF
  542: 
  543: !        XXX: RES is no longer needed.
  544:             CALL ZCOPY( N, RES, 1, DY, 1 )
  545:             CALL ZGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, DY, N,
  546:      $           INFO )
  547: *
  548: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  549: *
  550:             NORMX = 0.0D+0
  551:             NORMY = 0.0D+0
  552:             NORMDX = 0.0D+0
  553:             DZ_Z = 0.0D+0
  554:             YMIN = HUGEVAL
  555: 
  556:             DO I = 1, N
  557:                YK = CABS1( Y( I, J ) )
  558:                DYK = CABS1( DY( I ) )
  559: 
  560:                IF (YK .NE. 0.0D+0) THEN
  561:                   DZ_Z = MAX( DZ_Z, DYK / YK )
  562:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  563:                   DZ_Z = HUGEVAL
  564:                END IF
  565: 
  566:                YMIN = MIN( YMIN, YK )
  567: 
  568:                NORMY = MAX( NORMY, YK )
  569: 
  570:                IF ( COLEQU ) THEN
  571:                   NORMX = MAX( NORMX, YK * C( I ) )
  572:                   NORMDX = MAX(NORMDX, DYK * C(I))
  573:                ELSE
  574:                   NORMX = NORMY
  575:                   NORMDX = MAX( NORMDX, DYK )
  576:                END IF
  577:             END DO
  578: 
  579:             IF ( NORMX .NE. 0.0D+0 ) THEN
  580:                DX_X = NORMDX / NORMX
  581:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  582:                DX_X = 0.0D+0
  583:             ELSE
  584:                DX_X = HUGEVAL
  585:             END IF
  586: 
  587:             DXRAT = NORMDX / PREVNORMDX
  588:             DZRAT = DZ_Z / PREV_DZ_Z
  589: *
  590: *         Check termination criteria.
  591: *
  592:             IF (.NOT.IGNORE_CWISE
  593:      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
  594:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
  595:      $           INCR_PREC = .TRUE.
  596: 
  597:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  598:      $           X_STATE = WORKING_STATE
  599:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
  600:                IF ( DX_X .LE. EPS ) THEN
  601:                   X_STATE = CONV_STATE
  602:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  603:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  604:                      INCR_PREC = .TRUE.
  605:                   ELSE
  606:                      X_STATE = NOPROG_STATE
  607:                   END IF
  608:                ELSE
  609:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
  610:                END IF
  611:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  612:             END IF
  613: 
  614:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  615:      $           Z_STATE = WORKING_STATE
  616:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  617:      $           Z_STATE = WORKING_STATE
  618:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  619:                IF ( DZ_Z .LE. EPS ) THEN
  620:                   Z_STATE = CONV_STATE
  621:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  622:                   Z_STATE = UNSTABLE_STATE
  623:                   DZRATMAX = 0.0D+0
  624:                   FINAL_DZ_Z = HUGEVAL
  625:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  626:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  627:                      INCR_PREC = .TRUE.
  628:                   ELSE
  629:                      Z_STATE = NOPROG_STATE
  630:                   END IF
  631:                ELSE
  632:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  633:                END IF
  634:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  635:             END IF
  636: *
  637: *           Exit if both normwise and componentwise stopped working,
  638: *           but if componentwise is unstable, let it go at least two
  639: *           iterations.
  640: *
  641:             IF ( X_STATE.NE.WORKING_STATE ) THEN
  642:                IF ( IGNORE_CWISE ) GOTO 666
  643:                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
  644:      $              GOTO 666
  645:                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
  646:             END IF
  647: 
  648:             IF ( INCR_PREC ) THEN
  649:                INCR_PREC = .FALSE.
  650:                Y_PREC_STATE = Y_PREC_STATE + 1
  651:                DO I = 1, N
  652:                   Y_TAIL( I ) = 0.0D+0
  653:                END DO
  654:             END IF
  655: 
  656:             PREVNORMDX = NORMDX
  657:             PREV_DZ_Z = DZ_Z
  658: *
  659: *           Update soluton.
  660: *
  661:             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
  662:                CALL ZAXPY( N, (1.0D+0,0.0D+0), DY, 1, Y(1,J), 1 )
  663:             ELSE
  664:                CALL ZLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
  665:             END IF
  666: 
  667:          END DO
  668: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
  669:  666     CONTINUE
  670: *
  671: *     Set final_* when cnt hits ithresh.
  672: *
  673:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  674:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  675: *
  676: *     Compute error bounds.
  677: *
  678:          IF ( N_NORMS .GE. 1 ) THEN
  679:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
  680:      $           FINAL_DX_X / (1 - DXRATMAX)
  681:          END IF
  682:          IF ( N_NORMS .GE. 2 ) THEN
  683:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
  684:      $           FINAL_DZ_Z / (1 - DZRATMAX)
  685:          END IF
  686: *
  687: *     Compute componentwise relative backward error from formula
  688: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  689: *     where abs(Z) is the componentwise absolute value of the matrix
  690: *     or vector Z.
  691: *
  692: *        Compute residual RES = B_s - op(A_s) * Y,
  693: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
  694: *
  695:          CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
  696:          CALL ZGBMV( TRANS, N, N, KL, KU, (-1.0D+0,0.0D+0), AB, LDAB,
  697:      $        Y(1,J), 1, (1.0D+0,0.0D+0), RES, 1 )
  698: 
  699:          DO I = 1, N
  700:             AYB( I ) = CABS1( B( I, J ) )
  701:          END DO
  702: *
  703: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
  704: *
  705:         CALL ZLA_GBAMV( TRANS_TYPE, N, N, KL, KU, 1.0D+0,
  706:      $        AB, LDAB, Y(1, J), 1, 1.0D+0, AYB, 1 )
  707: 
  708:          CALL ZLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
  709: *
  710: *     End of loop for each RHS.
  711: *
  712:       END DO
  713: *
  714:       RETURN
  715:       END

CVSweb interface <joel.bertrand@systella.fr>