Annotation of rpl/lapack/lapack/zla_gbrfsx_extended.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b ZLA_GBRFSX_EXTENDED improves the computed solution to a system of linear equations for general banded matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
1.5       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZLA_GBRFSX_EXTENDED + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
                     22: *                                       NRHS, AB, LDAB, AFB, LDAFB, IPIV,
                     23: *                                       COLEQU, C, B, LDB, Y, LDY,
                     24: *                                       BERR_OUT, N_NORMS, ERR_BNDS_NORM,
                     25: *                                       ERR_BNDS_COMP, RES, AYB, DY,
                     26: *                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
                     27: *                                       DZ_UB, IGNORE_CWISE, INFO )
                     28: * 
                     29: *       .. Scalar Arguments ..
                     30: *       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
                     31: *      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
                     32: *       LOGICAL            COLEQU, IGNORE_CWISE
                     33: *       DOUBLE PRECISION   RTHRESH, DZ_UB
                     34: *       ..
                     35: *       .. Array Arguments ..
                     36: *       INTEGER            IPIV( * )
                     37: *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                     38: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
                     39: *       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT( * ),
                     40: *      $                   ERR_BNDS_NORM( NRHS, * ),
                     41: *      $                   ERR_BNDS_COMP( NRHS, * )
                     42: *       ..
                     43: *  
                     44: *
                     45: *> \par Purpose:
                     46: *  =============
                     47: *>
                     48: *> \verbatim
                     49: *>
                     50: *> ZLA_GBRFSX_EXTENDED improves the computed solution to a system of
                     51: *> linear equations by performing extra-precise iterative refinement
                     52: *> and provides error bounds and backward error estimates for the solution.
                     53: *> This subroutine is called by ZGBRFSX to perform iterative refinement.
                     54: *> In addition to normwise error bound, the code provides maximum
                     55: *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
                     56: *> and ERR_BNDS_COMP for details of the error bounds. Note that this
                     57: *> subroutine is only resonsible for setting the second fields of
                     58: *> ERR_BNDS_NORM and ERR_BNDS_COMP.
                     59: *> \endverbatim
                     60: *
                     61: *  Arguments:
                     62: *  ==========
                     63: *
                     64: *> \param[in] PREC_TYPE
                     65: *> \verbatim
                     66: *>          PREC_TYPE is INTEGER
                     67: *>     Specifies the intermediate precision to be used in refinement.
                     68: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and
                     69: *>     P    = 'S':  Single
                     70: *>          = 'D':  Double
                     71: *>          = 'I':  Indigenous
                     72: *>          = 'X', 'E':  Extra
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] TRANS_TYPE
                     76: *> \verbatim
                     77: *>          TRANS_TYPE is INTEGER
                     78: *>     Specifies the transposition operation on A.
                     79: *>     The value is defined by ILATRANS(T) where T is a CHARACTER and
                     80: *>     T    = 'N':  No transpose
                     81: *>          = 'T':  Transpose
                     82: *>          = 'C':  Conjugate transpose
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] N
                     86: *> \verbatim
                     87: *>          N is INTEGER
                     88: *>     The number of linear equations, i.e., the order of the
                     89: *>     matrix A.  N >= 0.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] KL
                     93: *> \verbatim
                     94: *>          KL is INTEGER
                     95: *>     The number of subdiagonals within the band of A.  KL >= 0.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] KU
                     99: *> \verbatim
                    100: *>          KU is INTEGER
                    101: *>     The number of superdiagonals within the band of A.  KU >= 0
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in] NRHS
                    105: *> \verbatim
                    106: *>          NRHS is INTEGER
                    107: *>     The number of right-hand-sides, i.e., the number of columns of the
                    108: *>     matrix B.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[in] AB
                    112: *> \verbatim
                    113: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
                    114: *>     On entry, the N-by-N matrix A.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in] LDAB
                    118: *> \verbatim
                    119: *>          LDAB is INTEGER
                    120: *>     The leading dimension of the array A.  LDAB >= max(1,N).
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[in] AFB
                    124: *> \verbatim
                    125: *>          AFB is COMPLEX*16 array, dimension (LDAF,N)
                    126: *>     The factors L and U from the factorization
                    127: *>     A = P*L*U as computed by ZGBTRF.
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[in] LDAFB
                    131: *> \verbatim
                    132: *>          LDAFB is INTEGER
                    133: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[in] IPIV
                    137: *> \verbatim
                    138: *>          IPIV is INTEGER array, dimension (N)
                    139: *>     The pivot indices from the factorization A = P*L*U
                    140: *>     as computed by ZGBTRF; row i of the matrix was interchanged
                    141: *>     with row IPIV(i).
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[in] COLEQU
                    145: *> \verbatim
                    146: *>          COLEQU is LOGICAL
                    147: *>     If .TRUE. then column equilibration was done to A before calling
                    148: *>     this routine. This is needed to compute the solution and error
                    149: *>     bounds correctly.
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[in] C
                    153: *> \verbatim
                    154: *>          C is DOUBLE PRECISION array, dimension (N)
                    155: *>     The column scale factors for A. If COLEQU = .FALSE., C
                    156: *>     is not accessed. If C is input, each element of C should be a power
                    157: *>     of the radix to ensure a reliable solution and error estimates.
                    158: *>     Scaling by powers of the radix does not cause rounding errors unless
                    159: *>     the result underflows or overflows. Rounding errors during scaling
                    160: *>     lead to refining with a matrix that is not equivalent to the
                    161: *>     input matrix, producing error estimates that may not be
                    162: *>     reliable.
                    163: *> \endverbatim
                    164: *>
                    165: *> \param[in] B
                    166: *> \verbatim
                    167: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    168: *>     The right-hand-side matrix B.
                    169: *> \endverbatim
                    170: *>
                    171: *> \param[in] LDB
                    172: *> \verbatim
                    173: *>          LDB is INTEGER
                    174: *>     The leading dimension of the array B.  LDB >= max(1,N).
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[in,out] Y
                    178: *> \verbatim
                    179: *>          Y is COMPLEX*16 array, dimension (LDY,NRHS)
                    180: *>     On entry, the solution matrix X, as computed by ZGBTRS.
                    181: *>     On exit, the improved solution matrix Y.
                    182: *> \endverbatim
                    183: *>
                    184: *> \param[in] LDY
                    185: *> \verbatim
                    186: *>          LDY is INTEGER
                    187: *>     The leading dimension of the array Y.  LDY >= max(1,N).
                    188: *> \endverbatim
                    189: *>
                    190: *> \param[out] BERR_OUT
                    191: *> \verbatim
                    192: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
                    193: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
                    194: *>     error for right-hand-side j from the formula
                    195: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    196: *>     where abs(Z) is the componentwise absolute value of the matrix
                    197: *>     or vector Z. This is computed by ZLA_LIN_BERR.
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[in] N_NORMS
                    201: *> \verbatim
                    202: *>          N_NORMS is INTEGER
                    203: *>     Determines which error bounds to return (see ERR_BNDS_NORM
                    204: *>     and ERR_BNDS_COMP).
                    205: *>     If N_NORMS >= 1 return normwise error bounds.
                    206: *>     If N_NORMS >= 2 return componentwise error bounds.
                    207: *> \endverbatim
                    208: *>
                    209: *> \param[in,out] ERR_BNDS_NORM
                    210: *> \verbatim
                    211: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension
                    212: *>                    (NRHS, N_ERR_BNDS)
                    213: *>     For each right-hand side, this array contains information about
                    214: *>     various error bounds and condition numbers corresponding to the
                    215: *>     normwise relative error, which is defined as follows:
                    216: *>
                    217: *>     Normwise relative error in the ith solution vector:
                    218: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
                    219: *>            ------------------------------
                    220: *>                  max_j abs(X(j,i))
                    221: *>
                    222: *>     The array is indexed by the type of error information as described
                    223: *>     below. There currently are up to three pieces of information
                    224: *>     returned.
                    225: *>
                    226: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
                    227: *>     right-hand side.
                    228: *>
                    229: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
                    230: *>     three fields:
                    231: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    232: *>              reciprocal condition number is less than the threshold
                    233: *>              sqrt(n) * slamch('Epsilon').
                    234: *>
                    235: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    236: *>              almost certainly within a factor of 10 of the true error
                    237: *>              so long as the next entry is greater than the threshold
                    238: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
                    239: *>              be trusted if the previous boolean is true.
                    240: *>
                    241: *>     err = 3  Reciprocal condition number: Estimated normwise
                    242: *>              reciprocal condition number.  Compared with the threshold
                    243: *>              sqrt(n) * slamch('Epsilon') to determine if the error
                    244: *>              estimate is "guaranteed". These reciprocal condition
                    245: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    246: *>              appropriately scaled matrix Z.
                    247: *>              Let Z = S*A, where S scales each row by a power of the
                    248: *>              radix so all absolute row sums of Z are approximately 1.
                    249: *>
                    250: *>     This subroutine is only responsible for setting the second field
                    251: *>     above.
                    252: *>     See Lapack Working Note 165 for further details and extra
                    253: *>     cautions.
                    254: *> \endverbatim
                    255: *>
                    256: *> \param[in,out] ERR_BNDS_COMP
                    257: *> \verbatim
                    258: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension
                    259: *>                    (NRHS, N_ERR_BNDS)
                    260: *>     For each right-hand side, this array contains information about
                    261: *>     various error bounds and condition numbers corresponding to the
                    262: *>     componentwise relative error, which is defined as follows:
                    263: *>
                    264: *>     Componentwise relative error in the ith solution vector:
                    265: *>                    abs(XTRUE(j,i) - X(j,i))
                    266: *>             max_j ----------------------
                    267: *>                         abs(X(j,i))
                    268: *>
                    269: *>     The array is indexed by the right-hand side i (on which the
                    270: *>     componentwise relative error depends), and the type of error
                    271: *>     information as described below. There currently are up to three
                    272: *>     pieces of information returned for each right-hand side. If
                    273: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
                    274: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
                    275: *>     the first (:,N_ERR_BNDS) entries are returned.
                    276: *>
                    277: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
                    278: *>     right-hand side.
                    279: *>
                    280: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
                    281: *>     three fields:
                    282: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    283: *>              reciprocal condition number is less than the threshold
                    284: *>              sqrt(n) * slamch('Epsilon').
                    285: *>
                    286: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    287: *>              almost certainly within a factor of 10 of the true error
                    288: *>              so long as the next entry is greater than the threshold
                    289: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
                    290: *>              be trusted if the previous boolean is true.
                    291: *>
                    292: *>     err = 3  Reciprocal condition number: Estimated componentwise
                    293: *>              reciprocal condition number.  Compared with the threshold
                    294: *>              sqrt(n) * slamch('Epsilon') to determine if the error
                    295: *>              estimate is "guaranteed". These reciprocal condition
                    296: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    297: *>              appropriately scaled matrix Z.
                    298: *>              Let Z = S*(A*diag(x)), where x is the solution for the
                    299: *>              current right-hand side and S scales each row of
                    300: *>              A*diag(x) by a power of the radix so all absolute row
                    301: *>              sums of Z are approximately 1.
                    302: *>
                    303: *>     This subroutine is only responsible for setting the second field
                    304: *>     above.
                    305: *>     See Lapack Working Note 165 for further details and extra
                    306: *>     cautions.
                    307: *> \endverbatim
                    308: *>
                    309: *> \param[in] RES
                    310: *> \verbatim
                    311: *>          RES is COMPLEX*16 array, dimension (N)
                    312: *>     Workspace to hold the intermediate residual.
                    313: *> \endverbatim
                    314: *>
                    315: *> \param[in] AYB
                    316: *> \verbatim
                    317: *>          AYB is DOUBLE PRECISION array, dimension (N)
                    318: *>     Workspace.
                    319: *> \endverbatim
                    320: *>
                    321: *> \param[in] DY
                    322: *> \verbatim
                    323: *>          DY is COMPLEX*16 array, dimension (N)
                    324: *>     Workspace to hold the intermediate solution.
                    325: *> \endverbatim
                    326: *>
                    327: *> \param[in] Y_TAIL
                    328: *> \verbatim
                    329: *>          Y_TAIL is COMPLEX*16 array, dimension (N)
                    330: *>     Workspace to hold the trailing bits of the intermediate solution.
                    331: *> \endverbatim
                    332: *>
                    333: *> \param[in] RCOND
                    334: *> \verbatim
                    335: *>          RCOND is DOUBLE PRECISION
                    336: *>     Reciprocal scaled condition number.  This is an estimate of the
                    337: *>     reciprocal Skeel condition number of the matrix A after
                    338: *>     equilibration (if done).  If this is less than the machine
                    339: *>     precision (in particular, if it is zero), the matrix is singular
                    340: *>     to working precision.  Note that the error may still be small even
                    341: *>     if this number is very small and the matrix appears ill-
                    342: *>     conditioned.
                    343: *> \endverbatim
                    344: *>
                    345: *> \param[in] ITHRESH
                    346: *> \verbatim
                    347: *>          ITHRESH is INTEGER
                    348: *>     The maximum number of residual computations allowed for
                    349: *>     refinement. The default is 10. For 'aggressive' set to 100 to
                    350: *>     permit convergence using approximate factorizations or
                    351: *>     factorizations other than LU. If the factorization uses a
                    352: *>     technique other than Gaussian elimination, the guarantees in
                    353: *>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
                    354: *> \endverbatim
                    355: *>
                    356: *> \param[in] RTHRESH
                    357: *> \verbatim
                    358: *>          RTHRESH is DOUBLE PRECISION
                    359: *>     Determines when to stop refinement if the error estimate stops
                    360: *>     decreasing. Refinement will stop when the next solution no longer
                    361: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
                    362: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
                    363: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
                    364: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
                    365: *>     for more details.
                    366: *> \endverbatim
                    367: *>
                    368: *> \param[in] DZ_UB
                    369: *> \verbatim
                    370: *>          DZ_UB is DOUBLE PRECISION
                    371: *>     Determines when to start considering componentwise convergence.
                    372: *>     Componentwise convergence is only considered after each component
                    373: *>     of the solution Y is stable, which we definte as the relative
                    374: *>     change in each component being less than DZ_UB. The default value
                    375: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
                    376: *>     more details.
                    377: *> \endverbatim
                    378: *>
                    379: *> \param[in] IGNORE_CWISE
                    380: *> \verbatim
                    381: *>          IGNORE_CWISE is LOGICAL
                    382: *>     If .TRUE. then ignore componentwise convergence. Default value
                    383: *>     is .FALSE..
                    384: *> \endverbatim
                    385: *>
                    386: *> \param[out] INFO
                    387: *> \verbatim
                    388: *>          INFO is INTEGER
                    389: *>       = 0:  Successful exit.
                    390: *>       < 0:  if INFO = -i, the ith argument to ZGBTRS had an illegal
                    391: *>             value
                    392: *> \endverbatim
                    393: *
                    394: *  Authors:
                    395: *  ========
                    396: *
                    397: *> \author Univ. of Tennessee 
                    398: *> \author Univ. of California Berkeley 
                    399: *> \author Univ. of Colorado Denver 
                    400: *> \author NAG Ltd. 
                    401: *
1.8     ! bertrand  402: *> \date September 2012
1.5       bertrand  403: *
                    404: *> \ingroup complex16GBcomputational
                    405: *
                    406: *  =====================================================================
1.1       bertrand  407:       SUBROUTINE ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
                    408:      $                                NRHS, AB, LDAB, AFB, LDAFB, IPIV,
                    409:      $                                COLEQU, C, B, LDB, Y, LDY,
                    410:      $                                BERR_OUT, N_NORMS, ERR_BNDS_NORM,
                    411:      $                                ERR_BNDS_COMP, RES, AYB, DY,
                    412:      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
                    413:      $                                DZ_UB, IGNORE_CWISE, INFO )
                    414: *
1.8     ! bertrand  415: *  -- LAPACK computational routine (version 3.4.2) --
1.5       bertrand  416: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    417: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  418: *     September 2012
1.1       bertrand  419: *
                    420: *     .. Scalar Arguments ..
                    421:       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
                    422:      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
                    423:       LOGICAL            COLEQU, IGNORE_CWISE
                    424:       DOUBLE PRECISION   RTHRESH, DZ_UB
                    425: *     ..
                    426: *     .. Array Arguments ..
                    427:       INTEGER            IPIV( * )
                    428:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    429:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
                    430:       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT( * ),
                    431:      $                   ERR_BNDS_NORM( NRHS, * ),
                    432:      $                   ERR_BNDS_COMP( NRHS, * )
                    433: *     ..
                    434: *
                    435: *  =====================================================================
                    436: *
                    437: *     .. Local Scalars ..
                    438:       CHARACTER          TRANS
                    439:       INTEGER            CNT, I, J, M, X_STATE, Z_STATE, Y_PREC_STATE
                    440:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
                    441:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
                    442:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
                    443:      $                   EPS, HUGEVAL, INCR_THRESH
                    444:       LOGICAL            INCR_PREC
                    445:       COMPLEX*16         ZDUM
                    446: *     ..
                    447: *     .. Parameters ..
                    448:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
                    449:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
                    450:      $                   EXTRA_Y
                    451:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
                    452:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
                    453:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
                    454:      $                   EXTRA_Y = 2 )
                    455:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
                    456:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
                    457:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
                    458:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
                    459:      $                   BERR_I = 3 )
                    460:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
                    461:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
                    462:      $                   PIV_GROWTH_I = 9 )
                    463:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    464:      $                   LA_LINRX_CWISE_I
                    465:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    466:      $                   LA_LINRX_ITHRESH_I = 2 )
                    467:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    468:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    469:      $                   LA_LINRX_RCOND_I
                    470:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    471:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    472: *     ..
                    473: *     .. External Subroutines ..
                    474:       EXTERNAL           ZAXPY, ZCOPY, ZGBTRS, ZGBMV, BLAS_ZGBMV_X,
                    475:      $                   BLAS_ZGBMV2_X, ZLA_GBAMV, ZLA_WWADDW, DLAMCH,
                    476:      $                   CHLA_TRANSTYPE, ZLA_LIN_BERR
                    477:       DOUBLE PRECISION   DLAMCH
                    478:       CHARACTER          CHLA_TRANSTYPE
                    479: *     ..
                    480: *     .. Intrinsic Functions..
                    481:       INTRINSIC          ABS, MAX, MIN
                    482: *     ..
                    483: *     .. Statement Functions ..
                    484:       DOUBLE PRECISION   CABS1
                    485: *     ..
                    486: *     .. Statement Function Definitions ..
                    487:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    488: *     ..
                    489: *     .. Executable Statements ..
                    490: *
                    491:       IF (INFO.NE.0) RETURN
                    492:       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
                    493:       EPS = DLAMCH( 'Epsilon' )
                    494:       HUGEVAL = DLAMCH( 'Overflow' )
                    495: *     Force HUGEVAL to Inf
                    496:       HUGEVAL = HUGEVAL * HUGEVAL
                    497: *     Using HUGEVAL may lead to spurious underflows.
                    498:       INCR_THRESH = DBLE( N ) * EPS
                    499:       M = KL+KU+1
                    500: 
                    501:       DO J = 1, NRHS
                    502:          Y_PREC_STATE = EXTRA_RESIDUAL
                    503:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
                    504:             DO I = 1, N
                    505:                Y_TAIL( I ) = 0.0D+0
                    506:             END DO
                    507:          END IF
                    508: 
                    509:          DXRAT = 0.0D+0
                    510:          DXRATMAX = 0.0D+0
                    511:          DZRAT = 0.0D+0
                    512:          DZRATMAX = 0.0D+0
                    513:          FINAL_DX_X = HUGEVAL
                    514:          FINAL_DZ_Z = HUGEVAL
                    515:          PREVNORMDX = HUGEVAL
                    516:          PREV_DZ_Z = HUGEVAL
                    517:          DZ_Z = HUGEVAL
                    518:          DX_X = HUGEVAL
                    519: 
                    520:          X_STATE = WORKING_STATE
                    521:          Z_STATE = UNSTABLE_STATE
                    522:          INCR_PREC = .FALSE.
                    523: 
                    524:          DO CNT = 1, ITHRESH
                    525: *
                    526: *        Compute residual RES = B_s - op(A_s) * Y,
                    527: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
                    528: *
                    529:             CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
                    530:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
                    531:                CALL ZGBMV( TRANS, M, N, KL, KU, (-1.0D+0,0.0D+0), AB,
                    532:      $              LDAB, Y( 1, J ), 1, (1.0D+0,0.0D+0), RES, 1 )
                    533:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
                    534:                CALL BLAS_ZGBMV_X( TRANS_TYPE, N, N, KL, KU,
                    535:      $              (-1.0D+0,0.0D+0), AB, LDAB, Y( 1, J ), 1,
                    536:      $              (1.0D+0,0.0D+0), RES, 1, PREC_TYPE )
                    537:             ELSE
                    538:                CALL BLAS_ZGBMV2_X( TRANS_TYPE, N, N, KL, KU,
                    539:      $              (-1.0D+0,0.0D+0), AB, LDAB, Y( 1, J ), Y_TAIL, 1,
                    540:      $              (1.0D+0,0.0D+0), RES, 1, PREC_TYPE )
                    541:             END IF
                    542: 
                    543: !        XXX: RES is no longer needed.
                    544:             CALL ZCOPY( N, RES, 1, DY, 1 )
                    545:             CALL ZGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, DY, N,
                    546:      $           INFO )
                    547: *
                    548: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
                    549: *
                    550:             NORMX = 0.0D+0
                    551:             NORMY = 0.0D+0
                    552:             NORMDX = 0.0D+0
                    553:             DZ_Z = 0.0D+0
                    554:             YMIN = HUGEVAL
                    555: 
                    556:             DO I = 1, N
                    557:                YK = CABS1( Y( I, J ) )
                    558:                DYK = CABS1( DY( I ) )
                    559: 
                    560:                IF (YK .NE. 0.0D+0) THEN
                    561:                   DZ_Z = MAX( DZ_Z, DYK / YK )
                    562:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
                    563:                   DZ_Z = HUGEVAL
                    564:                END IF
                    565: 
                    566:                YMIN = MIN( YMIN, YK )
                    567: 
                    568:                NORMY = MAX( NORMY, YK )
                    569: 
                    570:                IF ( COLEQU ) THEN
                    571:                   NORMX = MAX( NORMX, YK * C( I ) )
                    572:                   NORMDX = MAX(NORMDX, DYK * C(I))
                    573:                ELSE
                    574:                   NORMX = NORMY
                    575:                   NORMDX = MAX( NORMDX, DYK )
                    576:                END IF
                    577:             END DO
                    578: 
                    579:             IF ( NORMX .NE. 0.0D+0 ) THEN
                    580:                DX_X = NORMDX / NORMX
                    581:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
                    582:                DX_X = 0.0D+0
                    583:             ELSE
                    584:                DX_X = HUGEVAL
                    585:             END IF
                    586: 
                    587:             DXRAT = NORMDX / PREVNORMDX
                    588:             DZRAT = DZ_Z / PREV_DZ_Z
                    589: *
                    590: *         Check termination criteria.
                    591: *
                    592:             IF (.NOT.IGNORE_CWISE
                    593:      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
                    594:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
                    595:      $           INCR_PREC = .TRUE.
                    596: 
                    597:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
                    598:      $           X_STATE = WORKING_STATE
                    599:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
                    600:                IF ( DX_X .LE. EPS ) THEN
                    601:                   X_STATE = CONV_STATE
                    602:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
                    603:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    604:                      INCR_PREC = .TRUE.
                    605:                   ELSE
                    606:                      X_STATE = NOPROG_STATE
                    607:                   END IF
                    608:                ELSE
                    609:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
                    610:                END IF
                    611:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
                    612:             END IF
                    613: 
                    614:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
                    615:      $           Z_STATE = WORKING_STATE
                    616:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
                    617:      $           Z_STATE = WORKING_STATE
                    618:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
                    619:                IF ( DZ_Z .LE. EPS ) THEN
                    620:                   Z_STATE = CONV_STATE
                    621:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
                    622:                   Z_STATE = UNSTABLE_STATE
                    623:                   DZRATMAX = 0.0D+0
                    624:                   FINAL_DZ_Z = HUGEVAL
                    625:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
                    626:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    627:                      INCR_PREC = .TRUE.
                    628:                   ELSE
                    629:                      Z_STATE = NOPROG_STATE
                    630:                   END IF
                    631:                ELSE
                    632:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
                    633:                END IF
                    634:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    635:             END IF
                    636: *
                    637: *           Exit if both normwise and componentwise stopped working,
                    638: *           but if componentwise is unstable, let it go at least two
                    639: *           iterations.
                    640: *
                    641:             IF ( X_STATE.NE.WORKING_STATE ) THEN
                    642:                IF ( IGNORE_CWISE ) GOTO 666
                    643:                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
                    644:      $              GOTO 666
                    645:                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
                    646:             END IF
                    647: 
                    648:             IF ( INCR_PREC ) THEN
                    649:                INCR_PREC = .FALSE.
                    650:                Y_PREC_STATE = Y_PREC_STATE + 1
                    651:                DO I = 1, N
                    652:                   Y_TAIL( I ) = 0.0D+0
                    653:                END DO
                    654:             END IF
                    655: 
                    656:             PREVNORMDX = NORMDX
                    657:             PREV_DZ_Z = DZ_Z
                    658: *
                    659: *           Update soluton.
                    660: *
                    661:             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
                    662:                CALL ZAXPY( N, (1.0D+0,0.0D+0), DY, 1, Y(1,J), 1 )
                    663:             ELSE
                    664:                CALL ZLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
                    665:             END IF
                    666: 
                    667:          END DO
                    668: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
                    669:  666     CONTINUE
                    670: *
                    671: *     Set final_* when cnt hits ithresh.
                    672: *
                    673:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
                    674:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    675: *
                    676: *     Compute error bounds.
                    677: *
                    678:          IF ( N_NORMS .GE. 1 ) THEN
                    679:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
                    680:      $           FINAL_DX_X / (1 - DXRATMAX)
                    681:          END IF
                    682:          IF ( N_NORMS .GE. 2 ) THEN
                    683:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
                    684:      $           FINAL_DZ_Z / (1 - DZRATMAX)
                    685:          END IF
                    686: *
                    687: *     Compute componentwise relative backward error from formula
                    688: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    689: *     where abs(Z) is the componentwise absolute value of the matrix
                    690: *     or vector Z.
                    691: *
                    692: *        Compute residual RES = B_s - op(A_s) * Y,
                    693: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
                    694: *
                    695:          CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
                    696:          CALL ZGBMV( TRANS, N, N, KL, KU, (-1.0D+0,0.0D+0), AB, LDAB,
                    697:      $        Y(1,J), 1, (1.0D+0,0.0D+0), RES, 1 )
                    698: 
                    699:          DO I = 1, N
                    700:             AYB( I ) = CABS1( B( I, J ) )
                    701:          END DO
                    702: *
                    703: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
                    704: *
                    705:         CALL ZLA_GBAMV( TRANS_TYPE, N, N, KL, KU, 1.0D+0,
                    706:      $        AB, LDAB, Y(1, J), 1, 1.0D+0, AYB, 1 )
                    707: 
                    708:          CALL ZLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
                    709: *
                    710: *     End of loop for each RHS.
                    711: *
                    712:       END DO
                    713: *
                    714:       RETURN
                    715:       END

CVSweb interface <joel.bertrand@systella.fr>