Annotation of rpl/lapack/lapack/zla_gbrfsx_extended.f, revision 1.5

1.5     ! bertrand    1: *> \brief \b ZLA_GBRFSX_EXTENDED
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZLA_GBRFSX_EXTENDED + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
        !            22: *                                       NRHS, AB, LDAB, AFB, LDAFB, IPIV,
        !            23: *                                       COLEQU, C, B, LDB, Y, LDY,
        !            24: *                                       BERR_OUT, N_NORMS, ERR_BNDS_NORM,
        !            25: *                                       ERR_BNDS_COMP, RES, AYB, DY,
        !            26: *                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
        !            27: *                                       DZ_UB, IGNORE_CWISE, INFO )
        !            28: * 
        !            29: *       .. Scalar Arguments ..
        !            30: *       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
        !            31: *      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
        !            32: *       LOGICAL            COLEQU, IGNORE_CWISE
        !            33: *       DOUBLE PRECISION   RTHRESH, DZ_UB
        !            34: *       ..
        !            35: *       .. Array Arguments ..
        !            36: *       INTEGER            IPIV( * )
        !            37: *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
        !            38: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
        !            39: *       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT( * ),
        !            40: *      $                   ERR_BNDS_NORM( NRHS, * ),
        !            41: *      $                   ERR_BNDS_COMP( NRHS, * )
        !            42: *       ..
        !            43: *  
        !            44: *
        !            45: *> \par Purpose:
        !            46: *  =============
        !            47: *>
        !            48: *> \verbatim
        !            49: *>
        !            50: *> ZLA_GBRFSX_EXTENDED improves the computed solution to a system of
        !            51: *> linear equations by performing extra-precise iterative refinement
        !            52: *> and provides error bounds and backward error estimates for the solution.
        !            53: *> This subroutine is called by ZGBRFSX to perform iterative refinement.
        !            54: *> In addition to normwise error bound, the code provides maximum
        !            55: *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
        !            56: *> and ERR_BNDS_COMP for details of the error bounds. Note that this
        !            57: *> subroutine is only resonsible for setting the second fields of
        !            58: *> ERR_BNDS_NORM and ERR_BNDS_COMP.
        !            59: *> \endverbatim
        !            60: *
        !            61: *  Arguments:
        !            62: *  ==========
        !            63: *
        !            64: *> \param[in] PREC_TYPE
        !            65: *> \verbatim
        !            66: *>          PREC_TYPE is INTEGER
        !            67: *>     Specifies the intermediate precision to be used in refinement.
        !            68: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and
        !            69: *>     P    = 'S':  Single
        !            70: *>          = 'D':  Double
        !            71: *>          = 'I':  Indigenous
        !            72: *>          = 'X', 'E':  Extra
        !            73: *> \endverbatim
        !            74: *>
        !            75: *> \param[in] TRANS_TYPE
        !            76: *> \verbatim
        !            77: *>          TRANS_TYPE is INTEGER
        !            78: *>     Specifies the transposition operation on A.
        !            79: *>     The value is defined by ILATRANS(T) where T is a CHARACTER and
        !            80: *>     T    = 'N':  No transpose
        !            81: *>          = 'T':  Transpose
        !            82: *>          = 'C':  Conjugate transpose
        !            83: *> \endverbatim
        !            84: *>
        !            85: *> \param[in] N
        !            86: *> \verbatim
        !            87: *>          N is INTEGER
        !            88: *>     The number of linear equations, i.e., the order of the
        !            89: *>     matrix A.  N >= 0.
        !            90: *> \endverbatim
        !            91: *>
        !            92: *> \param[in] KL
        !            93: *> \verbatim
        !            94: *>          KL is INTEGER
        !            95: *>     The number of subdiagonals within the band of A.  KL >= 0.
        !            96: *> \endverbatim
        !            97: *>
        !            98: *> \param[in] KU
        !            99: *> \verbatim
        !           100: *>          KU is INTEGER
        !           101: *>     The number of superdiagonals within the band of A.  KU >= 0
        !           102: *> \endverbatim
        !           103: *>
        !           104: *> \param[in] NRHS
        !           105: *> \verbatim
        !           106: *>          NRHS is INTEGER
        !           107: *>     The number of right-hand-sides, i.e., the number of columns of the
        !           108: *>     matrix B.
        !           109: *> \endverbatim
        !           110: *>
        !           111: *> \param[in] AB
        !           112: *> \verbatim
        !           113: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
        !           114: *>     On entry, the N-by-N matrix A.
        !           115: *> \endverbatim
        !           116: *>
        !           117: *> \param[in] LDAB
        !           118: *> \verbatim
        !           119: *>          LDAB is INTEGER
        !           120: *>     The leading dimension of the array A.  LDAB >= max(1,N).
        !           121: *> \endverbatim
        !           122: *>
        !           123: *> \param[in] AFB
        !           124: *> \verbatim
        !           125: *>          AFB is COMPLEX*16 array, dimension (LDAF,N)
        !           126: *>     The factors L and U from the factorization
        !           127: *>     A = P*L*U as computed by ZGBTRF.
        !           128: *> \endverbatim
        !           129: *>
        !           130: *> \param[in] LDAFB
        !           131: *> \verbatim
        !           132: *>          LDAFB is INTEGER
        !           133: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[in] IPIV
        !           137: *> \verbatim
        !           138: *>          IPIV is INTEGER array, dimension (N)
        !           139: *>     The pivot indices from the factorization A = P*L*U
        !           140: *>     as computed by ZGBTRF; row i of the matrix was interchanged
        !           141: *>     with row IPIV(i).
        !           142: *> \endverbatim
        !           143: *>
        !           144: *> \param[in] COLEQU
        !           145: *> \verbatim
        !           146: *>          COLEQU is LOGICAL
        !           147: *>     If .TRUE. then column equilibration was done to A before calling
        !           148: *>     this routine. This is needed to compute the solution and error
        !           149: *>     bounds correctly.
        !           150: *> \endverbatim
        !           151: *>
        !           152: *> \param[in] C
        !           153: *> \verbatim
        !           154: *>          C is DOUBLE PRECISION array, dimension (N)
        !           155: *>     The column scale factors for A. If COLEQU = .FALSE., C
        !           156: *>     is not accessed. If C is input, each element of C should be a power
        !           157: *>     of the radix to ensure a reliable solution and error estimates.
        !           158: *>     Scaling by powers of the radix does not cause rounding errors unless
        !           159: *>     the result underflows or overflows. Rounding errors during scaling
        !           160: *>     lead to refining with a matrix that is not equivalent to the
        !           161: *>     input matrix, producing error estimates that may not be
        !           162: *>     reliable.
        !           163: *> \endverbatim
        !           164: *>
        !           165: *> \param[in] B
        !           166: *> \verbatim
        !           167: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
        !           168: *>     The right-hand-side matrix B.
        !           169: *> \endverbatim
        !           170: *>
        !           171: *> \param[in] LDB
        !           172: *> \verbatim
        !           173: *>          LDB is INTEGER
        !           174: *>     The leading dimension of the array B.  LDB >= max(1,N).
        !           175: *> \endverbatim
        !           176: *>
        !           177: *> \param[in,out] Y
        !           178: *> \verbatim
        !           179: *>          Y is COMPLEX*16 array, dimension (LDY,NRHS)
        !           180: *>     On entry, the solution matrix X, as computed by ZGBTRS.
        !           181: *>     On exit, the improved solution matrix Y.
        !           182: *> \endverbatim
        !           183: *>
        !           184: *> \param[in] LDY
        !           185: *> \verbatim
        !           186: *>          LDY is INTEGER
        !           187: *>     The leading dimension of the array Y.  LDY >= max(1,N).
        !           188: *> \endverbatim
        !           189: *>
        !           190: *> \param[out] BERR_OUT
        !           191: *> \verbatim
        !           192: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
        !           193: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
        !           194: *>     error for right-hand-side j from the formula
        !           195: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
        !           196: *>     where abs(Z) is the componentwise absolute value of the matrix
        !           197: *>     or vector Z. This is computed by ZLA_LIN_BERR.
        !           198: *> \endverbatim
        !           199: *>
        !           200: *> \param[in] N_NORMS
        !           201: *> \verbatim
        !           202: *>          N_NORMS is INTEGER
        !           203: *>     Determines which error bounds to return (see ERR_BNDS_NORM
        !           204: *>     and ERR_BNDS_COMP).
        !           205: *>     If N_NORMS >= 1 return normwise error bounds.
        !           206: *>     If N_NORMS >= 2 return componentwise error bounds.
        !           207: *> \endverbatim
        !           208: *>
        !           209: *> \param[in,out] ERR_BNDS_NORM
        !           210: *> \verbatim
        !           211: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension
        !           212: *>                    (NRHS, N_ERR_BNDS)
        !           213: *>     For each right-hand side, this array contains information about
        !           214: *>     various error bounds and condition numbers corresponding to the
        !           215: *>     normwise relative error, which is defined as follows:
        !           216: *>
        !           217: *>     Normwise relative error in the ith solution vector:
        !           218: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
        !           219: *>            ------------------------------
        !           220: *>                  max_j abs(X(j,i))
        !           221: *>
        !           222: *>     The array is indexed by the type of error information as described
        !           223: *>     below. There currently are up to three pieces of information
        !           224: *>     returned.
        !           225: *>
        !           226: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
        !           227: *>     right-hand side.
        !           228: *>
        !           229: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
        !           230: *>     three fields:
        !           231: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           232: *>              reciprocal condition number is less than the threshold
        !           233: *>              sqrt(n) * slamch('Epsilon').
        !           234: *>
        !           235: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           236: *>              almost certainly within a factor of 10 of the true error
        !           237: *>              so long as the next entry is greater than the threshold
        !           238: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
        !           239: *>              be trusted if the previous boolean is true.
        !           240: *>
        !           241: *>     err = 3  Reciprocal condition number: Estimated normwise
        !           242: *>              reciprocal condition number.  Compared with the threshold
        !           243: *>              sqrt(n) * slamch('Epsilon') to determine if the error
        !           244: *>              estimate is "guaranteed". These reciprocal condition
        !           245: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           246: *>              appropriately scaled matrix Z.
        !           247: *>              Let Z = S*A, where S scales each row by a power of the
        !           248: *>              radix so all absolute row sums of Z are approximately 1.
        !           249: *>
        !           250: *>     This subroutine is only responsible for setting the second field
        !           251: *>     above.
        !           252: *>     See Lapack Working Note 165 for further details and extra
        !           253: *>     cautions.
        !           254: *> \endverbatim
        !           255: *>
        !           256: *> \param[in,out] ERR_BNDS_COMP
        !           257: *> \verbatim
        !           258: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension
        !           259: *>                    (NRHS, N_ERR_BNDS)
        !           260: *>     For each right-hand side, this array contains information about
        !           261: *>     various error bounds and condition numbers corresponding to the
        !           262: *>     componentwise relative error, which is defined as follows:
        !           263: *>
        !           264: *>     Componentwise relative error in the ith solution vector:
        !           265: *>                    abs(XTRUE(j,i) - X(j,i))
        !           266: *>             max_j ----------------------
        !           267: *>                         abs(X(j,i))
        !           268: *>
        !           269: *>     The array is indexed by the right-hand side i (on which the
        !           270: *>     componentwise relative error depends), and the type of error
        !           271: *>     information as described below. There currently are up to three
        !           272: *>     pieces of information returned for each right-hand side. If
        !           273: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
        !           274: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
        !           275: *>     the first (:,N_ERR_BNDS) entries are returned.
        !           276: *>
        !           277: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
        !           278: *>     right-hand side.
        !           279: *>
        !           280: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
        !           281: *>     three fields:
        !           282: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           283: *>              reciprocal condition number is less than the threshold
        !           284: *>              sqrt(n) * slamch('Epsilon').
        !           285: *>
        !           286: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           287: *>              almost certainly within a factor of 10 of the true error
        !           288: *>              so long as the next entry is greater than the threshold
        !           289: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
        !           290: *>              be trusted if the previous boolean is true.
        !           291: *>
        !           292: *>     err = 3  Reciprocal condition number: Estimated componentwise
        !           293: *>              reciprocal condition number.  Compared with the threshold
        !           294: *>              sqrt(n) * slamch('Epsilon') to determine if the error
        !           295: *>              estimate is "guaranteed". These reciprocal condition
        !           296: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           297: *>              appropriately scaled matrix Z.
        !           298: *>              Let Z = S*(A*diag(x)), where x is the solution for the
        !           299: *>              current right-hand side and S scales each row of
        !           300: *>              A*diag(x) by a power of the radix so all absolute row
        !           301: *>              sums of Z are approximately 1.
        !           302: *>
        !           303: *>     This subroutine is only responsible for setting the second field
        !           304: *>     above.
        !           305: *>     See Lapack Working Note 165 for further details and extra
        !           306: *>     cautions.
        !           307: *> \endverbatim
        !           308: *>
        !           309: *> \param[in] RES
        !           310: *> \verbatim
        !           311: *>          RES is COMPLEX*16 array, dimension (N)
        !           312: *>     Workspace to hold the intermediate residual.
        !           313: *> \endverbatim
        !           314: *>
        !           315: *> \param[in] AYB
        !           316: *> \verbatim
        !           317: *>          AYB is DOUBLE PRECISION array, dimension (N)
        !           318: *>     Workspace.
        !           319: *> \endverbatim
        !           320: *>
        !           321: *> \param[in] DY
        !           322: *> \verbatim
        !           323: *>          DY is COMPLEX*16 array, dimension (N)
        !           324: *>     Workspace to hold the intermediate solution.
        !           325: *> \endverbatim
        !           326: *>
        !           327: *> \param[in] Y_TAIL
        !           328: *> \verbatim
        !           329: *>          Y_TAIL is COMPLEX*16 array, dimension (N)
        !           330: *>     Workspace to hold the trailing bits of the intermediate solution.
        !           331: *> \endverbatim
        !           332: *>
        !           333: *> \param[in] RCOND
        !           334: *> \verbatim
        !           335: *>          RCOND is DOUBLE PRECISION
        !           336: *>     Reciprocal scaled condition number.  This is an estimate of the
        !           337: *>     reciprocal Skeel condition number of the matrix A after
        !           338: *>     equilibration (if done).  If this is less than the machine
        !           339: *>     precision (in particular, if it is zero), the matrix is singular
        !           340: *>     to working precision.  Note that the error may still be small even
        !           341: *>     if this number is very small and the matrix appears ill-
        !           342: *>     conditioned.
        !           343: *> \endverbatim
        !           344: *>
        !           345: *> \param[in] ITHRESH
        !           346: *> \verbatim
        !           347: *>          ITHRESH is INTEGER
        !           348: *>     The maximum number of residual computations allowed for
        !           349: *>     refinement. The default is 10. For 'aggressive' set to 100 to
        !           350: *>     permit convergence using approximate factorizations or
        !           351: *>     factorizations other than LU. If the factorization uses a
        !           352: *>     technique other than Gaussian elimination, the guarantees in
        !           353: *>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
        !           354: *> \endverbatim
        !           355: *>
        !           356: *> \param[in] RTHRESH
        !           357: *> \verbatim
        !           358: *>          RTHRESH is DOUBLE PRECISION
        !           359: *>     Determines when to stop refinement if the error estimate stops
        !           360: *>     decreasing. Refinement will stop when the next solution no longer
        !           361: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
        !           362: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
        !           363: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
        !           364: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
        !           365: *>     for more details.
        !           366: *> \endverbatim
        !           367: *>
        !           368: *> \param[in] DZ_UB
        !           369: *> \verbatim
        !           370: *>          DZ_UB is DOUBLE PRECISION
        !           371: *>     Determines when to start considering componentwise convergence.
        !           372: *>     Componentwise convergence is only considered after each component
        !           373: *>     of the solution Y is stable, which we definte as the relative
        !           374: *>     change in each component being less than DZ_UB. The default value
        !           375: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
        !           376: *>     more details.
        !           377: *> \endverbatim
        !           378: *>
        !           379: *> \param[in] IGNORE_CWISE
        !           380: *> \verbatim
        !           381: *>          IGNORE_CWISE is LOGICAL
        !           382: *>     If .TRUE. then ignore componentwise convergence. Default value
        !           383: *>     is .FALSE..
        !           384: *> \endverbatim
        !           385: *>
        !           386: *> \param[out] INFO
        !           387: *> \verbatim
        !           388: *>          INFO is INTEGER
        !           389: *>       = 0:  Successful exit.
        !           390: *>       < 0:  if INFO = -i, the ith argument to ZGBTRS had an illegal
        !           391: *>             value
        !           392: *> \endverbatim
        !           393: *
        !           394: *  Authors:
        !           395: *  ========
        !           396: *
        !           397: *> \author Univ. of Tennessee 
        !           398: *> \author Univ. of California Berkeley 
        !           399: *> \author Univ. of Colorado Denver 
        !           400: *> \author NAG Ltd. 
        !           401: *
        !           402: *> \date November 2011
        !           403: *
        !           404: *> \ingroup complex16GBcomputational
        !           405: *
        !           406: *  =====================================================================
1.1       bertrand  407:       SUBROUTINE ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
                    408:      $                                NRHS, AB, LDAB, AFB, LDAFB, IPIV,
                    409:      $                                COLEQU, C, B, LDB, Y, LDY,
                    410:      $                                BERR_OUT, N_NORMS, ERR_BNDS_NORM,
                    411:      $                                ERR_BNDS_COMP, RES, AYB, DY,
                    412:      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
                    413:      $                                DZ_UB, IGNORE_CWISE, INFO )
                    414: *
1.5     ! bertrand  415: *  -- LAPACK computational routine (version 3.4.0) --
        !           416: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           417: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           418: *     November 2011
1.1       bertrand  419: *
                    420: *     .. Scalar Arguments ..
                    421:       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
                    422:      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
                    423:       LOGICAL            COLEQU, IGNORE_CWISE
                    424:       DOUBLE PRECISION   RTHRESH, DZ_UB
                    425: *     ..
                    426: *     .. Array Arguments ..
                    427:       INTEGER            IPIV( * )
                    428:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    429:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
                    430:       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT( * ),
                    431:      $                   ERR_BNDS_NORM( NRHS, * ),
                    432:      $                   ERR_BNDS_COMP( NRHS, * )
                    433: *     ..
                    434: *
                    435: *  =====================================================================
                    436: *
                    437: *     .. Local Scalars ..
                    438:       CHARACTER          TRANS
                    439:       INTEGER            CNT, I, J, M, X_STATE, Z_STATE, Y_PREC_STATE
                    440:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
                    441:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
                    442:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
                    443:      $                   EPS, HUGEVAL, INCR_THRESH
                    444:       LOGICAL            INCR_PREC
                    445:       COMPLEX*16         ZDUM
                    446: *     ..
                    447: *     .. Parameters ..
                    448:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
                    449:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
                    450:      $                   EXTRA_Y
                    451:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
                    452:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
                    453:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
                    454:      $                   EXTRA_Y = 2 )
                    455:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
                    456:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
                    457:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
                    458:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
                    459:      $                   BERR_I = 3 )
                    460:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
                    461:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
                    462:      $                   PIV_GROWTH_I = 9 )
                    463:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    464:      $                   LA_LINRX_CWISE_I
                    465:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    466:      $                   LA_LINRX_ITHRESH_I = 2 )
                    467:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    468:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    469:      $                   LA_LINRX_RCOND_I
                    470:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    471:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    472: *     ..
                    473: *     .. External Subroutines ..
                    474:       EXTERNAL           ZAXPY, ZCOPY, ZGBTRS, ZGBMV, BLAS_ZGBMV_X,
                    475:      $                   BLAS_ZGBMV2_X, ZLA_GBAMV, ZLA_WWADDW, DLAMCH,
                    476:      $                   CHLA_TRANSTYPE, ZLA_LIN_BERR
                    477:       DOUBLE PRECISION   DLAMCH
                    478:       CHARACTER          CHLA_TRANSTYPE
                    479: *     ..
                    480: *     .. Intrinsic Functions..
                    481:       INTRINSIC          ABS, MAX, MIN
                    482: *     ..
                    483: *     .. Statement Functions ..
                    484:       DOUBLE PRECISION   CABS1
                    485: *     ..
                    486: *     .. Statement Function Definitions ..
                    487:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    488: *     ..
                    489: *     .. Executable Statements ..
                    490: *
                    491:       IF (INFO.NE.0) RETURN
                    492:       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
                    493:       EPS = DLAMCH( 'Epsilon' )
                    494:       HUGEVAL = DLAMCH( 'Overflow' )
                    495: *     Force HUGEVAL to Inf
                    496:       HUGEVAL = HUGEVAL * HUGEVAL
                    497: *     Using HUGEVAL may lead to spurious underflows.
                    498:       INCR_THRESH = DBLE( N ) * EPS
                    499:       M = KL+KU+1
                    500: 
                    501:       DO J = 1, NRHS
                    502:          Y_PREC_STATE = EXTRA_RESIDUAL
                    503:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
                    504:             DO I = 1, N
                    505:                Y_TAIL( I ) = 0.0D+0
                    506:             END DO
                    507:          END IF
                    508: 
                    509:          DXRAT = 0.0D+0
                    510:          DXRATMAX = 0.0D+0
                    511:          DZRAT = 0.0D+0
                    512:          DZRATMAX = 0.0D+0
                    513:          FINAL_DX_X = HUGEVAL
                    514:          FINAL_DZ_Z = HUGEVAL
                    515:          PREVNORMDX = HUGEVAL
                    516:          PREV_DZ_Z = HUGEVAL
                    517:          DZ_Z = HUGEVAL
                    518:          DX_X = HUGEVAL
                    519: 
                    520:          X_STATE = WORKING_STATE
                    521:          Z_STATE = UNSTABLE_STATE
                    522:          INCR_PREC = .FALSE.
                    523: 
                    524:          DO CNT = 1, ITHRESH
                    525: *
                    526: *        Compute residual RES = B_s - op(A_s) * Y,
                    527: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
                    528: *
                    529:             CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
                    530:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
                    531:                CALL ZGBMV( TRANS, M, N, KL, KU, (-1.0D+0,0.0D+0), AB,
                    532:      $              LDAB, Y( 1, J ), 1, (1.0D+0,0.0D+0), RES, 1 )
                    533:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
                    534:                CALL BLAS_ZGBMV_X( TRANS_TYPE, N, N, KL, KU,
                    535:      $              (-1.0D+0,0.0D+0), AB, LDAB, Y( 1, J ), 1,
                    536:      $              (1.0D+0,0.0D+0), RES, 1, PREC_TYPE )
                    537:             ELSE
                    538:                CALL BLAS_ZGBMV2_X( TRANS_TYPE, N, N, KL, KU,
                    539:      $              (-1.0D+0,0.0D+0), AB, LDAB, Y( 1, J ), Y_TAIL, 1,
                    540:      $              (1.0D+0,0.0D+0), RES, 1, PREC_TYPE )
                    541:             END IF
                    542: 
                    543: !        XXX: RES is no longer needed.
                    544:             CALL ZCOPY( N, RES, 1, DY, 1 )
                    545:             CALL ZGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, DY, N,
                    546:      $           INFO )
                    547: *
                    548: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
                    549: *
                    550:             NORMX = 0.0D+0
                    551:             NORMY = 0.0D+0
                    552:             NORMDX = 0.0D+0
                    553:             DZ_Z = 0.0D+0
                    554:             YMIN = HUGEVAL
                    555: 
                    556:             DO I = 1, N
                    557:                YK = CABS1( Y( I, J ) )
                    558:                DYK = CABS1( DY( I ) )
                    559: 
                    560:                IF (YK .NE. 0.0D+0) THEN
                    561:                   DZ_Z = MAX( DZ_Z, DYK / YK )
                    562:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
                    563:                   DZ_Z = HUGEVAL
                    564:                END IF
                    565: 
                    566:                YMIN = MIN( YMIN, YK )
                    567: 
                    568:                NORMY = MAX( NORMY, YK )
                    569: 
                    570:                IF ( COLEQU ) THEN
                    571:                   NORMX = MAX( NORMX, YK * C( I ) )
                    572:                   NORMDX = MAX(NORMDX, DYK * C(I))
                    573:                ELSE
                    574:                   NORMX = NORMY
                    575:                   NORMDX = MAX( NORMDX, DYK )
                    576:                END IF
                    577:             END DO
                    578: 
                    579:             IF ( NORMX .NE. 0.0D+0 ) THEN
                    580:                DX_X = NORMDX / NORMX
                    581:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
                    582:                DX_X = 0.0D+0
                    583:             ELSE
                    584:                DX_X = HUGEVAL
                    585:             END IF
                    586: 
                    587:             DXRAT = NORMDX / PREVNORMDX
                    588:             DZRAT = DZ_Z / PREV_DZ_Z
                    589: *
                    590: *         Check termination criteria.
                    591: *
                    592:             IF (.NOT.IGNORE_CWISE
                    593:      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
                    594:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
                    595:      $           INCR_PREC = .TRUE.
                    596: 
                    597:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
                    598:      $           X_STATE = WORKING_STATE
                    599:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
                    600:                IF ( DX_X .LE. EPS ) THEN
                    601:                   X_STATE = CONV_STATE
                    602:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
                    603:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    604:                      INCR_PREC = .TRUE.
                    605:                   ELSE
                    606:                      X_STATE = NOPROG_STATE
                    607:                   END IF
                    608:                ELSE
                    609:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
                    610:                END IF
                    611:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
                    612:             END IF
                    613: 
                    614:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
                    615:      $           Z_STATE = WORKING_STATE
                    616:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
                    617:      $           Z_STATE = WORKING_STATE
                    618:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
                    619:                IF ( DZ_Z .LE. EPS ) THEN
                    620:                   Z_STATE = CONV_STATE
                    621:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
                    622:                   Z_STATE = UNSTABLE_STATE
                    623:                   DZRATMAX = 0.0D+0
                    624:                   FINAL_DZ_Z = HUGEVAL
                    625:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
                    626:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    627:                      INCR_PREC = .TRUE.
                    628:                   ELSE
                    629:                      Z_STATE = NOPROG_STATE
                    630:                   END IF
                    631:                ELSE
                    632:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
                    633:                END IF
                    634:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    635:             END IF
                    636: *
                    637: *           Exit if both normwise and componentwise stopped working,
                    638: *           but if componentwise is unstable, let it go at least two
                    639: *           iterations.
                    640: *
                    641:             IF ( X_STATE.NE.WORKING_STATE ) THEN
                    642:                IF ( IGNORE_CWISE ) GOTO 666
                    643:                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
                    644:      $              GOTO 666
                    645:                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
                    646:             END IF
                    647: 
                    648:             IF ( INCR_PREC ) THEN
                    649:                INCR_PREC = .FALSE.
                    650:                Y_PREC_STATE = Y_PREC_STATE + 1
                    651:                DO I = 1, N
                    652:                   Y_TAIL( I ) = 0.0D+0
                    653:                END DO
                    654:             END IF
                    655: 
                    656:             PREVNORMDX = NORMDX
                    657:             PREV_DZ_Z = DZ_Z
                    658: *
                    659: *           Update soluton.
                    660: *
                    661:             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
                    662:                CALL ZAXPY( N, (1.0D+0,0.0D+0), DY, 1, Y(1,J), 1 )
                    663:             ELSE
                    664:                CALL ZLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
                    665:             END IF
                    666: 
                    667:          END DO
                    668: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
                    669:  666     CONTINUE
                    670: *
                    671: *     Set final_* when cnt hits ithresh.
                    672: *
                    673:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
                    674:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    675: *
                    676: *     Compute error bounds.
                    677: *
                    678:          IF ( N_NORMS .GE. 1 ) THEN
                    679:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
                    680:      $           FINAL_DX_X / (1 - DXRATMAX)
                    681:          END IF
                    682:          IF ( N_NORMS .GE. 2 ) THEN
                    683:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
                    684:      $           FINAL_DZ_Z / (1 - DZRATMAX)
                    685:          END IF
                    686: *
                    687: *     Compute componentwise relative backward error from formula
                    688: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    689: *     where abs(Z) is the componentwise absolute value of the matrix
                    690: *     or vector Z.
                    691: *
                    692: *        Compute residual RES = B_s - op(A_s) * Y,
                    693: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
                    694: *
                    695:          CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
                    696:          CALL ZGBMV( TRANS, N, N, KL, KU, (-1.0D+0,0.0D+0), AB, LDAB,
                    697:      $        Y(1,J), 1, (1.0D+0,0.0D+0), RES, 1 )
                    698: 
                    699:          DO I = 1, N
                    700:             AYB( I ) = CABS1( B( I, J ) )
                    701:          END DO
                    702: *
                    703: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
                    704: *
                    705:         CALL ZLA_GBAMV( TRANS_TYPE, N, N, KL, KU, 1.0D+0,
                    706:      $        AB, LDAB, Y(1, J), 1, 1.0D+0, AYB, 1 )
                    707: 
                    708:          CALL ZLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
                    709: *
                    710: *     End of loop for each RHS.
                    711: *
                    712:       END DO
                    713: *
                    714:       RETURN
                    715:       END

CVSweb interface <joel.bertrand@systella.fr>