File:  [local] / rpl / lapack / lapack / zla_gbrcond_x.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:21:08 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Ajout des nouveaux fichiers pour Lapack 3.2.2.

    1:       DOUBLE PRECISION FUNCTION ZLA_GBRCOND_X( TRANS, N, KL, KU, AB,
    2:      $                                         LDAB, AFB, LDAFB, IPIV,
    3:      $                                         X, INFO, WORK, RWORK )
    4: *
    5: *     -- LAPACK routine (version 3.2.1)                               --
    6: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    7: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    8: *     -- April 2009                                                   --
    9: *
   10: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   11: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   12: *
   13:       IMPLICIT NONE
   14: *     ..
   15: *     .. Scalar Arguments ..
   16:       CHARACTER          TRANS
   17:       INTEGER            N, KL, KU, KD, KE, LDAB, LDAFB, INFO
   18: *     ..
   19: *     .. Array Arguments ..
   20:       INTEGER            IPIV( * )
   21:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), WORK( * ),
   22:      $                   X( * )
   23:       DOUBLE PRECISION   RWORK( * )
   24: *
   25: *
   26: *  Purpose
   27: *  =======
   28: *
   29: *     ZLA_GBRCOND_X Computes the infinity norm condition number of
   30: *     op(A) * diag(X) where X is a COMPLEX*16 vector.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *     TRANS   (input) CHARACTER*1
   36: *     Specifies the form of the system of equations:
   37: *       = 'N':  A * X = B     (No transpose)
   38: *       = 'T':  A**T * X = B  (Transpose)
   39: *       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
   40: *
   41: *     N       (input) INTEGER
   42: *     The number of linear equations, i.e., the order of the
   43: *     matrix A.  N >= 0.
   44: *
   45: *     KL      (input) INTEGER
   46: *     The number of subdiagonals within the band of A.  KL >= 0.
   47: *
   48: *     KU      (input) INTEGER
   49: *     The number of superdiagonals within the band of A.  KU >= 0.
   50: *
   51: *     AB      (input) COMPLEX*16 array, dimension (LDAB,N)
   52: *     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
   53: *     The j-th column of A is stored in the j-th column of the
   54: *     array AB as follows:
   55: *     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
   56: *
   57: *     LDAB    (input) INTEGER
   58: *     The leading dimension of the array AB.  LDAB >= KL+KU+1.
   59: *
   60: *     AFB     (input) COMPLEX*16 array, dimension (LDAFB,N)
   61: *     Details of the LU factorization of the band matrix A, as
   62: *     computed by ZGBTRF.  U is stored as an upper triangular
   63: *     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
   64: *     and the multipliers used during the factorization are stored
   65: *     in rows KL+KU+2 to 2*KL+KU+1.
   66: *
   67: *     LDAFB   (input) INTEGER
   68: *     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
   69: *
   70: *     IPIV    (input) INTEGER array, dimension (N)
   71: *     The pivot indices from the factorization A = P*L*U
   72: *     as computed by ZGBTRF; row i of the matrix was interchanged
   73: *     with row IPIV(i).
   74: *
   75: *     X       (input) COMPLEX*16 array, dimension (N)
   76: *     The vector X in the formula op(A) * diag(X).
   77: *
   78: *     INFO    (output) INTEGER
   79: *       = 0:  Successful exit.
   80: *     i > 0:  The ith argument is invalid.
   81: *
   82: *     WORK    (input) COMPLEX*16 array, dimension (2*N).
   83: *     Workspace.
   84: *
   85: *     RWORK   (input) DOUBLE PRECISION array, dimension (N).
   86: *     Workspace.
   87: *
   88: *  =====================================================================
   89: *
   90: *     .. Local Scalars ..
   91:       LOGICAL            NOTRANS
   92:       INTEGER            KASE, I, J
   93:       DOUBLE PRECISION   AINVNM, ANORM, TMP
   94:       COMPLEX*16         ZDUM
   95: *     ..
   96: *     .. Local Arrays ..
   97:       INTEGER            ISAVE( 3 )
   98: *     ..
   99: *     .. External Functions ..
  100:       LOGICAL            LSAME
  101:       EXTERNAL           LSAME
  102: *     ..
  103: *     .. External Subroutines ..
  104:       EXTERNAL           ZLACN2, ZGBTRS, XERBLA
  105: *     ..
  106: *     .. Intrinsic Functions ..
  107:       INTRINSIC          ABS, MAX
  108: *     ..
  109: *     .. Statement Functions ..
  110:       DOUBLE PRECISION   CABS1
  111: *     ..
  112: *     .. Statement Function Definitions ..
  113:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  114: *     ..
  115: *     .. Executable Statements ..
  116: *
  117:       ZLA_GBRCOND_X = 0.0D+0
  118: *
  119:       INFO = 0
  120:       NOTRANS = LSAME( TRANS, 'N' )
  121:       IF ( .NOT. NOTRANS .AND. .NOT. LSAME(TRANS, 'T') .AND. .NOT.
  122:      $     LSAME( TRANS, 'C' ) ) THEN
  123:          INFO = -1
  124:       ELSE IF( N.LT.0 ) THEN
  125:          INFO = -2
  126:       ELSE IF( KL.LT.0 .OR. KL.GT.N-1 ) THEN
  127:          INFO = -3
  128:       ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
  129:          INFO = -4
  130:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  131:          INFO = -6
  132:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
  133:          INFO = -8
  134:       END IF
  135:       IF( INFO.NE.0 ) THEN
  136:          CALL XERBLA( 'ZLA_GBRCOND_X', -INFO )
  137:          RETURN
  138:       END IF
  139: *
  140: *     Compute norm of op(A)*op2(C).
  141: *
  142:       KD = KU + 1
  143:       KE = KL + 1
  144:       ANORM = 0.0D+0
  145:       IF ( NOTRANS ) THEN
  146:          DO I = 1, N
  147:             TMP = 0.0D+0
  148:             DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  149:                TMP = TMP + CABS1( AB( KD+I-J, J) * X( J ) )
  150:             END DO
  151:             RWORK( I ) = TMP
  152:             ANORM = MAX( ANORM, TMP )
  153:          END DO
  154:       ELSE
  155:          DO I = 1, N
  156:             TMP = 0.0D+0
  157:             DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  158:                TMP = TMP + CABS1( AB( KE-I+J, I ) * X( J ) )
  159:             END DO
  160:             RWORK( I ) = TMP
  161:             ANORM = MAX( ANORM, TMP )
  162:          END DO
  163:       END IF
  164: *
  165: *     Quick return if possible.
  166: *
  167:       IF( N.EQ.0 ) THEN
  168:          ZLA_GBRCOND_X = 1.0D+0
  169:          RETURN
  170:       ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
  171:          RETURN
  172:       END IF
  173: *
  174: *     Estimate the norm of inv(op(A)).
  175: *
  176:       AINVNM = 0.0D+0
  177: *
  178:       KASE = 0
  179:    10 CONTINUE
  180:       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  181:       IF( KASE.NE.0 ) THEN
  182:          IF( KASE.EQ.2 ) THEN
  183: *
  184: *           Multiply by R.
  185: *
  186:             DO I = 1, N
  187:                WORK( I ) = WORK( I ) * RWORK( I )
  188:             END DO
  189: *
  190:             IF ( NOTRANS ) THEN
  191:                CALL ZGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
  192:      $              IPIV, WORK, N, INFO )
  193:             ELSE
  194:                CALL ZGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
  195:      $              LDAFB, IPIV, WORK, N, INFO )
  196:             ENDIF
  197: *
  198: *           Multiply by inv(X).
  199: *
  200:             DO I = 1, N
  201:                WORK( I ) = WORK( I ) / X( I )
  202:             END DO
  203:          ELSE
  204: *
  205: *           Multiply by inv(X').
  206: *
  207:             DO I = 1, N
  208:                WORK( I ) = WORK( I ) / X( I )
  209:             END DO
  210: *
  211:             IF ( NOTRANS ) THEN
  212:                CALL ZGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
  213:      $              LDAFB, IPIV, WORK, N, INFO )
  214:             ELSE
  215:                CALL ZGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
  216:      $              IPIV, WORK, N, INFO )
  217:             END IF
  218: *
  219: *           Multiply by R.
  220: *
  221:             DO I = 1, N
  222:                WORK( I ) = WORK( I ) * RWORK( I )
  223:             END DO
  224:          END IF
  225:          GO TO 10
  226:       END IF
  227: *
  228: *     Compute the estimate of the reciprocal condition number.
  229: *
  230:       IF( AINVNM .NE. 0.0D+0 )
  231:      $   ZLA_GBRCOND_X = 1.0D+0 / AINVNM
  232: *
  233:       RETURN
  234: *
  235:       END

CVSweb interface <joel.bertrand@systella.fr>