File:  [local] / rpl / lapack / lapack / zla_gbrcond_c.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:16 2011 UTC (12 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       DOUBLE PRECISION FUNCTION ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, 
    2:      $                                         LDAB, AFB, LDAFB, IPIV,
    3:      $                                         C, CAPPLY, INFO, WORK,
    4:      $                                         RWORK )
    5: *
    6: *     -- LAPACK routine (version 3.2.1)                               --
    7: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    8: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    9: *     -- April 2009                                                   --
   10: *
   11: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   12: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   13: *
   14:       IMPLICIT NONE
   15: *     ..
   16: *     .. Scalar Arguments ..
   17:       CHARACTER          TRANS
   18:       LOGICAL            CAPPLY
   19:       INTEGER            N, KL, KU, KD, KE, LDAB, LDAFB, INFO
   20: *     ..
   21: *     .. Array Arguments ..
   22:       INTEGER            IPIV( * )
   23:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), WORK( * )
   24:       DOUBLE PRECISION   C( * ), RWORK( * )
   25: *
   26: *
   27: *  Purpose
   28: *  =======
   29: *
   30: *     ZLA_GBRCOND_C Computes the infinity norm condition number of
   31: *     op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
   32: *
   33: *  Arguments
   34: *  =========
   35: *
   36: *     TRANS   (input) CHARACTER*1
   37: *     Specifies the form of the system of equations:
   38: *       = 'N':  A * X = B     (No transpose)
   39: *       = 'T':  A**T * X = B  (Transpose)
   40: *       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
   41: *
   42: *     N       (input) INTEGER
   43: *     The number of linear equations, i.e., the order of the
   44: *     matrix A.  N >= 0.
   45: *
   46: *     KL      (input) INTEGER
   47: *     The number of subdiagonals within the band of A.  KL >= 0.
   48: *
   49: *     KU      (input) INTEGER
   50: *     The number of superdiagonals within the band of A.  KU >= 0.
   51: *
   52: *     AB      (input) COMPLEX*16 array, dimension (LDAB,N)
   53: *     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
   54: *     The j-th column of A is stored in the j-th column of the
   55: *     array AB as follows:
   56: *     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
   57: *
   58: *     LDAB    (input) INTEGER
   59: *     The leading dimension of the array AB.  LDAB >= KL+KU+1.
   60: *
   61: *     AFB     (input) COMPLEX*16 array, dimension (LDAFB,N)
   62: *     Details of the LU factorization of the band matrix A, as
   63: *     computed by ZGBTRF.  U is stored as an upper triangular
   64: *     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
   65: *     and the multipliers used during the factorization are stored
   66: *     in rows KL+KU+2 to 2*KL+KU+1.
   67: *
   68: *     LDAFB   (input) INTEGER
   69: *     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
   70: *
   71: *     IPIV    (input) INTEGER array, dimension (N)
   72: *     The pivot indices from the factorization A = P*L*U
   73: *     as computed by ZGBTRF; row i of the matrix was interchanged
   74: *     with row IPIV(i).
   75: *
   76: *     C       (input) DOUBLE PRECISION array, dimension (N)
   77: *     The vector C in the formula op(A) * inv(diag(C)).
   78: *
   79: *     CAPPLY  (input) LOGICAL
   80: *     If .TRUE. then access the vector C in the formula above.
   81: *
   82: *     INFO    (output) INTEGER
   83: *       = 0:  Successful exit.
   84: *     i > 0:  The ith argument is invalid.
   85: *
   86: *     WORK    (input) COMPLEX*16 array, dimension (2*N).
   87: *     Workspace.
   88: *
   89: *     RWORK   (input) DOUBLE PRECISION array, dimension (N).
   90: *     Workspace.
   91: *
   92: *  =====================================================================
   93: *
   94: *     .. Local Scalars ..
   95:       LOGICAL            NOTRANS
   96:       INTEGER            KASE, I, J
   97:       DOUBLE PRECISION   AINVNM, ANORM, TMP
   98:       COMPLEX*16         ZDUM
   99: *     ..
  100: *     .. Local Arrays ..
  101:       INTEGER            ISAVE( 3 )
  102: *     ..
  103: *     .. External Functions ..
  104:       LOGICAL            LSAME
  105:       EXTERNAL           LSAME
  106: *     ..
  107: *     .. External Subroutines ..
  108:       EXTERNAL           ZLACN2, ZGBTRS, XERBLA
  109: *     ..
  110: *     .. Intrinsic Functions ..
  111:       INTRINSIC          ABS, MAX
  112: *     ..
  113: *     .. Statement Functions ..
  114:       DOUBLE PRECISION   CABS1
  115: *     ..
  116: *     .. Statement Function Definitions ..
  117:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  118: *     ..
  119: *     .. Executable Statements ..
  120:       ZLA_GBRCOND_C = 0.0D+0
  121: *
  122:       INFO = 0
  123:       NOTRANS = LSAME( TRANS, 'N' )
  124:       IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT.
  125:      $     LSAME( TRANS, 'C' ) ) THEN
  126:          INFO = -1
  127:       ELSE IF( N.LT.0 ) THEN
  128:          INFO = -2
  129:       ELSE IF( KL.LT.0 .OR. KL.GT.N-1 ) THEN
  130:          INFO = -3
  131:       ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
  132:          INFO = -4
  133:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  134:          INFO = -6
  135:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
  136:          INFO = -8
  137:       END IF
  138:       IF( INFO.NE.0 ) THEN
  139:          CALL XERBLA( 'ZLA_GBRCOND_C', -INFO )
  140:          RETURN
  141:       END IF
  142: *
  143: *     Compute norm of op(A)*op2(C).
  144: *
  145:       ANORM = 0.0D+0
  146:       KD = KU + 1
  147:       KE = KL + 1
  148:       IF ( NOTRANS ) THEN
  149:          DO I = 1, N
  150:             TMP = 0.0D+0
  151:             IF ( CAPPLY ) THEN
  152:                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  153:                   TMP = TMP + CABS1( AB( KD+I-J, J ) ) / C( J )
  154:                END DO
  155:             ELSE
  156:                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  157:                   TMP = TMP + CABS1( AB( KD+I-J, J ) )
  158:                END DO
  159:             END IF
  160:             RWORK( I ) = TMP
  161:             ANORM = MAX( ANORM, TMP )
  162:          END DO
  163:       ELSE
  164:          DO I = 1, N
  165:             TMP = 0.0D+0
  166:             IF ( CAPPLY ) THEN
  167:                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  168:                   TMP = TMP + CABS1( AB( KE-I+J, I ) ) / C( J )
  169:                END DO
  170:             ELSE
  171:                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  172:                   TMP = TMP + CABS1( AB( KE-I+J, I ) )
  173:                END DO
  174:             END IF
  175:             RWORK( I ) = TMP
  176:             ANORM = MAX( ANORM, TMP )
  177:          END DO
  178:       END IF
  179: *
  180: *     Quick return if possible.
  181: *
  182:       IF( N.EQ.0 ) THEN
  183:          ZLA_GBRCOND_C = 1.0D+0
  184:          RETURN
  185:       ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
  186:          RETURN
  187:       END IF
  188: *
  189: *     Estimate the norm of inv(op(A)).
  190: *
  191:       AINVNM = 0.0D+0
  192: *
  193:       KASE = 0
  194:    10 CONTINUE
  195:       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  196:       IF( KASE.NE.0 ) THEN
  197:          IF( KASE.EQ.2 ) THEN
  198: *
  199: *           Multiply by R.
  200: *
  201:             DO I = 1, N
  202:                WORK( I ) = WORK( I ) * RWORK( I )
  203:             END DO
  204: *
  205:             IF ( NOTRANS ) THEN
  206:                CALL ZGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
  207:      $              IPIV, WORK, N, INFO )
  208:             ELSE
  209:                CALL ZGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
  210:      $              LDAFB, IPIV, WORK, N, INFO )
  211:             ENDIF
  212: *
  213: *           Multiply by inv(C).
  214: *
  215:             IF ( CAPPLY ) THEN
  216:                DO I = 1, N
  217:                   WORK( I ) = WORK( I ) * C( I )
  218:                END DO
  219:             END IF
  220:          ELSE
  221: *
  222: *           Multiply by inv(C**H).
  223: *
  224:             IF ( CAPPLY ) THEN
  225:                DO I = 1, N
  226:                   WORK( I ) = WORK( I ) * C( I )
  227:                END DO
  228:             END IF
  229: *
  230:             IF ( NOTRANS ) THEN
  231:                CALL ZGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
  232:      $              LDAFB, IPIV,  WORK, N, INFO )
  233:             ELSE
  234:                CALL ZGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
  235:      $              IPIV, WORK, N, INFO )
  236:             END IF
  237: *
  238: *           Multiply by R.
  239: *
  240:             DO I = 1, N
  241:                WORK( I ) = WORK( I ) * RWORK( I )
  242:             END DO
  243:          END IF
  244:          GO TO 10
  245:       END IF
  246: *
  247: *     Compute the estimate of the reciprocal condition number.
  248: *
  249:       IF( AINVNM .NE. 0.0D+0 )
  250:      $   ZLA_GBRCOND_C = 1.0D+0 / AINVNM
  251: *
  252:       RETURN
  253: *
  254:       END

CVSweb interface <joel.bertrand@systella.fr>