File:  [local] / rpl / lapack / lapack / zla_gbamv.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:47 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE ZLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
    2:      $                      INCX, BETA, Y, INCY )
    3: *
    4: *     -- LAPACK routine (version 3.2.2)                                 --
    5: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    6: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    7: *     -- June 2010                                                    --
    8: *
    9: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   10: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   11: *
   12:       IMPLICIT NONE
   13: *     ..
   14: *     .. Scalar Arguments ..
   15:       DOUBLE PRECISION   ALPHA, BETA
   16:       INTEGER            INCX, INCY, LDAB, M, N, KL, KU, TRANS
   17: *     ..
   18: *     .. Array Arguments ..
   19:       COMPLEX*16         AB( LDAB, * ), X( * )
   20:       DOUBLE PRECISION   Y( * )
   21: *     ..
   22: *
   23: *  Purpose
   24: *  =======
   25: *
   26: *  DLA_GBAMV  performs one of the matrix-vector operations
   27: *
   28: *          y := alpha*abs(A)*abs(x) + beta*abs(y),
   29: *     or   y := alpha*abs(A)'*abs(x) + beta*abs(y),
   30: *
   31: *  where alpha and beta are scalars, x and y are vectors and A is an
   32: *  m by n matrix.
   33: *
   34: *  This function is primarily used in calculating error bounds.
   35: *  To protect against underflow during evaluation, components in
   36: *  the resulting vector are perturbed away from zero by (N+1)
   37: *  times the underflow threshold.  To prevent unnecessarily large
   38: *  errors for block-structure embedded in general matrices,
   39: *  "symbolically" zero components are not perturbed.  A zero
   40: *  entry is considered "symbolic" if all multiplications involved
   41: *  in computing that entry have at least one zero multiplicand.
   42: *
   43: *  Arguments
   44: *  ==========
   45: *
   46: *  TRANS   (input) INTEGER
   47: *           On entry, TRANS specifies the operation to be performed as
   48: *           follows:
   49: *
   50: *             BLAS_NO_TRANS      y := alpha*abs(A)*abs(x) + beta*abs(y)
   51: *             BLAS_TRANS         y := alpha*abs(A')*abs(x) + beta*abs(y)
   52: *             BLAS_CONJ_TRANS    y := alpha*abs(A')*abs(x) + beta*abs(y)
   53: *
   54: *           Unchanged on exit.
   55: *
   56: *  M       (input) INTEGER
   57: *           On entry, M specifies the number of rows of the matrix A.
   58: *           M must be at least zero.
   59: *           Unchanged on exit.
   60: *
   61: *  N       (input) INTEGER
   62: *           On entry, N specifies the number of columns of the matrix A.
   63: *           N must be at least zero.
   64: *           Unchanged on exit.
   65: *
   66: *  KL      (input) INTEGER
   67: *           The number of subdiagonals within the band of A.  KL >= 0.
   68: *
   69: *  KU      (input) INTEGER
   70: *           The number of superdiagonals within the band of A.  KU >= 0.
   71: *
   72: *  ALPHA  - DOUBLE PRECISION
   73: *           On entry, ALPHA specifies the scalar alpha.
   74: *           Unchanged on exit.
   75: *
   76: *  A      - DOUBLE PRECISION   array of DIMENSION ( LDA, n )
   77: *           Before entry, the leading m by n part of the array A must
   78: *           contain the matrix of coefficients.
   79: *           Unchanged on exit.
   80: *
   81: *  LDA     (input) INTEGER
   82: *           On entry, LDA specifies the first dimension of A as declared
   83: *           in the calling (sub) program. LDA must be at least
   84: *           max( 1, m ).
   85: *           Unchanged on exit.
   86: *
   87: *  X       (input) DOUBLE PRECISION array, dimension
   88: *           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
   89: *           and at least
   90: *           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
   91: *           Before entry, the incremented array X must contain the
   92: *           vector x.
   93: *           Unchanged on exit.
   94: *
   95: *  INCX    (input) INTEGER
   96: *           On entry, INCX specifies the increment for the elements of
   97: *           X. INCX must not be zero.
   98: *           Unchanged on exit.
   99: *
  100: *  BETA   - DOUBLE PRECISION
  101: *           On entry, BETA specifies the scalar beta. When BETA is
  102: *           supplied as zero then Y need not be set on input.
  103: *           Unchanged on exit.
  104: *
  105: *  Y       (input/output) DOUBLE PRECISION  array, dimension
  106: *           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  107: *           and at least
  108: *           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  109: *           Before entry with BETA non-zero, the incremented array Y
  110: *           must contain the vector y. On exit, Y is overwritten by the
  111: *           updated vector y.
  112: *
  113: *  INCY    (input) INTEGER
  114: *           On entry, INCY specifies the increment for the elements of
  115: *           Y. INCY must not be zero.
  116: *           Unchanged on exit.
  117: *
  118: *
  119: *  Level 2 Blas routine.
  120: *
  121: *  =====================================================================
  122: *
  123: *     .. Parameters ..
  124:       COMPLEX*16         ONE, ZERO
  125:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  126: *     ..
  127: *     .. Local Scalars ..
  128:       LOGICAL            SYMB_ZERO
  129:       DOUBLE PRECISION   TEMP, SAFE1
  130:       INTEGER            I, INFO, IY, J, JX, KX, KY, LENX, LENY, KD, KE
  131:       COMPLEX*16         CDUM
  132: *     ..
  133: *     .. External Subroutines ..
  134:       EXTERNAL           XERBLA, DLAMCH
  135:       DOUBLE PRECISION   DLAMCH
  136: *     ..
  137: *     .. External Functions ..
  138:       EXTERNAL           ILATRANS
  139:       INTEGER            ILATRANS
  140: *     ..
  141: *     .. Intrinsic Functions ..
  142:       INTRINSIC          MAX, ABS, REAL, DIMAG, SIGN
  143: *     ..
  144: *     .. Statement Functions
  145:       DOUBLE PRECISION   CABS1
  146: *     ..
  147: *     .. Statement Function Definitions ..
  148:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  149: *     ..
  150: *     .. Executable Statements ..
  151: *
  152: *     Test the input parameters.
  153: *
  154:       INFO = 0
  155:       IF     ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) )
  156:      $           .OR. ( TRANS.EQ.ILATRANS( 'T' ) )
  157:      $           .OR. ( TRANS.EQ.ILATRANS( 'C' ) ) ) ) THEN
  158:          INFO = 1
  159:       ELSE IF( M.LT.0 )THEN
  160:          INFO = 2
  161:       ELSE IF( N.LT.0 )THEN
  162:          INFO = 3
  163:       ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
  164:          INFO = 4
  165:       ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
  166:          INFO = 5
  167:       ELSE IF( LDAB.LT.KL+KU+1 )THEN
  168:          INFO = 6
  169:       ELSE IF( INCX.EQ.0 )THEN
  170:          INFO = 8
  171:       ELSE IF( INCY.EQ.0 )THEN
  172:          INFO = 11
  173:       END IF
  174:       IF( INFO.NE.0 )THEN
  175:          CALL XERBLA( 'ZLA_GBAMV ', INFO )
  176:          RETURN
  177:       END IF
  178: *
  179: *     Quick return if possible.
  180: *
  181:       IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  182:      $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  183:      $   RETURN
  184: *
  185: *     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
  186: *     up the start points in  X  and  Y.
  187: *
  188:       IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  189:          LENX = N
  190:          LENY = M
  191:       ELSE
  192:          LENX = M
  193:          LENY = N
  194:       END IF
  195:       IF( INCX.GT.0 )THEN
  196:          KX = 1
  197:       ELSE
  198:          KX = 1 - ( LENX - 1 )*INCX
  199:       END IF
  200:       IF( INCY.GT.0 )THEN
  201:          KY = 1
  202:       ELSE
  203:          KY = 1 - ( LENY - 1 )*INCY
  204:       END IF
  205: *
  206: *     Set SAFE1 essentially to be the underflow threshold times the
  207: *     number of additions in each row.
  208: *
  209:       SAFE1 = DLAMCH( 'Safe minimum' )
  210:       SAFE1 = (N+1)*SAFE1
  211: *
  212: *     Form  y := alpha*abs(A)*abs(x) + beta*abs(y).
  213: *
  214: *     The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
  215: *     the inexact flag.  Still doesn't help change the iteration order
  216: *     to per-column.
  217: *
  218:       KD = KU + 1
  219:       KE = KL + 1
  220:       IY = KY
  221:       IF ( INCX.EQ.1 ) THEN
  222:          IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  223:             DO I = 1, LENY
  224:                IF ( BETA .EQ. 0.0D+0 ) THEN
  225:                   SYMB_ZERO = .TRUE.
  226:                   Y( IY ) = 0.0D+0
  227:                ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  228:                   SYMB_ZERO = .TRUE.
  229:                ELSE
  230:                   SYMB_ZERO = .FALSE.
  231:                   Y( IY ) = BETA * ABS( Y( IY ) )
  232:                END IF
  233:                IF ( ALPHA .NE. 0.0D+0 ) THEN
  234:                   DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  235:                      TEMP = CABS1( AB( KD+I-J, J ) )
  236:                      SYMB_ZERO = SYMB_ZERO .AND.
  237:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  238: 
  239:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  240:                   END DO
  241:                END IF
  242: 
  243:                IF ( .NOT.SYMB_ZERO)
  244:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  245: 
  246:                IY = IY + INCY
  247:             END DO
  248:          ELSE
  249:             DO I = 1, LENY
  250:                IF ( BETA .EQ. 0.0D+0 ) THEN
  251:                   SYMB_ZERO = .TRUE.
  252:                   Y( IY ) = 0.0D+0
  253:                ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  254:                   SYMB_ZERO = .TRUE.
  255:                ELSE
  256:                   SYMB_ZERO = .FALSE.
  257:                   Y( IY ) = BETA * ABS( Y( IY ) )
  258:                END IF
  259:                IF ( ALPHA .NE. 0.0D+0 ) THEN
  260:                   DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  261:                      TEMP = CABS1( AB( KE-I+J, I ) )
  262:                      SYMB_ZERO = SYMB_ZERO .AND.
  263:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  264: 
  265:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  266:                   END DO
  267:                END IF
  268: 
  269:                IF ( .NOT.SYMB_ZERO)
  270:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  271: 
  272:                IY = IY + INCY
  273:             END DO
  274:          END IF
  275:       ELSE
  276:          IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  277:             DO I = 1, LENY
  278:                IF ( BETA .EQ. 0.0D+0 ) THEN
  279:                   SYMB_ZERO = .TRUE.
  280:                   Y( IY ) = 0.0D+0
  281:                ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  282:                   SYMB_ZERO = .TRUE.
  283:                ELSE
  284:                   SYMB_ZERO = .FALSE.
  285:                   Y( IY ) = BETA * ABS( Y( IY ) )
  286:                END IF
  287:                IF ( ALPHA .NE. 0.0D+0 ) THEN
  288:                   JX = KX
  289:                   DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  290:                      TEMP = CABS1( AB( KD+I-J, J ) )
  291:                      SYMB_ZERO = SYMB_ZERO .AND.
  292:      $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  293: 
  294:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  295:                      JX = JX + INCX
  296:                   END DO
  297:                END IF
  298: 
  299:                IF ( .NOT.SYMB_ZERO )
  300:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  301: 
  302:                IY = IY + INCY
  303:             END DO
  304:          ELSE
  305:             DO I = 1, LENY
  306:                IF ( BETA .EQ. 0.0D+0 ) THEN
  307:                   SYMB_ZERO = .TRUE.
  308:                   Y( IY ) = 0.0D+0
  309:                ELSE IF ( Y( IY ) .EQ. 0.0D+0 ) THEN
  310:                   SYMB_ZERO = .TRUE.
  311:                ELSE
  312:                   SYMB_ZERO = .FALSE.
  313:                   Y( IY ) = BETA * ABS( Y( IY ) )
  314:                END IF
  315:                IF ( ALPHA .NE. 0.0D+0 ) THEN
  316:                   JX = KX
  317:                   DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  318:                      TEMP = CABS1( AB( KE-I+J, I ) )
  319:                      SYMB_ZERO = SYMB_ZERO .AND.
  320:      $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  321:                      
  322:                      Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  323:                      JX = JX + INCX
  324:                   END DO
  325:                END IF
  326: 
  327:                IF ( .NOT.SYMB_ZERO )
  328:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  329: 
  330:                IY = IY + INCY
  331:             END DO
  332:          END IF
  333:          
  334:       END IF
  335: *     
  336:       RETURN
  337: *
  338: *     End of ZLA_GBAMV
  339: *
  340:       END

CVSweb interface <joel.bertrand@systella.fr>