Annotation of rpl/lapack/lapack/zhseqr.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE ZHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ,
                      2:      $                   WORK, LWORK, INFO )
                      3: *
1.5       bertrand    4: *  -- LAPACK computational routine (version 3.2.2) --
1.1       bertrand    5: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
1.5       bertrand    6: *     June 2010
1.1       bertrand    7: *
                      8: *     .. Scalar Arguments ..
                      9:       INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
                     10:       CHARACTER          COMPZ, JOB
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
                     14: *     ..
                     15: *     Purpose
                     16: *     =======
                     17: *
                     18: *     ZHSEQR computes the eigenvalues of a Hessenberg matrix H
                     19: *     and, optionally, the matrices T and Z from the Schur decomposition
                     20: *     H = Z T Z**H, where T is an upper triangular matrix (the
                     21: *     Schur form), and Z is the unitary matrix of Schur vectors.
                     22: *
                     23: *     Optionally Z may be postmultiplied into an input unitary
                     24: *     matrix Q so that this routine can give the Schur factorization
                     25: *     of a matrix A which has been reduced to the Hessenberg form H
                     26: *     by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*H*(QZ)**H.
                     27: *
                     28: *     Arguments
                     29: *     =========
                     30: *
                     31: *     JOB   (input) CHARACTER*1
                     32: *           = 'E':  compute eigenvalues only;
                     33: *           = 'S':  compute eigenvalues and the Schur form T.
                     34: *
                     35: *     COMPZ (input) CHARACTER*1
                     36: *           = 'N':  no Schur vectors are computed;
                     37: *           = 'I':  Z is initialized to the unit matrix and the matrix Z
                     38: *                   of Schur vectors of H is returned;
                     39: *           = 'V':  Z must contain an unitary matrix Q on entry, and
                     40: *                   the product Q*Z is returned.
                     41: *
                     42: *     N     (input) INTEGER
                     43: *           The order of the matrix H.  N .GE. 0.
                     44: *
                     45: *     ILO   (input) INTEGER
                     46: *     IHI   (input) INTEGER
                     47: *           It is assumed that H is already upper triangular in rows
                     48: *           and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
                     49: *           set by a previous call to ZGEBAL, and then passed to ZGEHRD
                     50: *           when the matrix output by ZGEBAL is reduced to Hessenberg
                     51: *           form. Otherwise ILO and IHI should be set to 1 and N
                     52: *           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
                     53: *           If N = 0, then ILO = 1 and IHI = 0.
                     54: *
                     55: *     H     (input/output) COMPLEX*16 array, dimension (LDH,N)
                     56: *           On entry, the upper Hessenberg matrix H.
                     57: *           On exit, if INFO = 0 and JOB = 'S', H contains the upper
                     58: *           triangular matrix T from the Schur decomposition (the
                     59: *           Schur form). If INFO = 0 and JOB = 'E', the contents of
                     60: *           H are unspecified on exit.  (The output value of H when
                     61: *           INFO.GT.0 is given under the description of INFO below.)
                     62: *
                     63: *           Unlike earlier versions of ZHSEQR, this subroutine may
                     64: *           explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
                     65: *           or j = IHI+1, IHI+2, ... N.
                     66: *
                     67: *     LDH   (input) INTEGER
                     68: *           The leading dimension of the array H. LDH .GE. max(1,N).
                     69: *
                     70: *     W        (output) COMPLEX*16 array, dimension (N)
                     71: *           The computed eigenvalues. If JOB = 'S', the eigenvalues are
                     72: *           stored in the same order as on the diagonal of the Schur
                     73: *           form returned in H, with W(i) = H(i,i).
                     74: *
                     75: *     Z     (input/output) COMPLEX*16 array, dimension (LDZ,N)
                     76: *           If COMPZ = 'N', Z is not referenced.
                     77: *           If COMPZ = 'I', on entry Z need not be set and on exit,
                     78: *           if INFO = 0, Z contains the unitary matrix Z of the Schur
                     79: *           vectors of H.  If COMPZ = 'V', on entry Z must contain an
                     80: *           N-by-N matrix Q, which is assumed to be equal to the unit
                     81: *           matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
                     82: *           if INFO = 0, Z contains Q*Z.
                     83: *           Normally Q is the unitary matrix generated by ZUNGHR
                     84: *           after the call to ZGEHRD which formed the Hessenberg matrix
                     85: *           H. (The output value of Z when INFO.GT.0 is given under
                     86: *           the description of INFO below.)
                     87: *
                     88: *     LDZ   (input) INTEGER
                     89: *           The leading dimension of the array Z.  if COMPZ = 'I' or
                     90: *           COMPZ = 'V', then LDZ.GE.MAX(1,N).  Otherwize, LDZ.GE.1.
                     91: *
                     92: *     WORK  (workspace/output) COMPLEX*16 array, dimension (LWORK)
                     93: *           On exit, if INFO = 0, WORK(1) returns an estimate of
                     94: *           the optimal value for LWORK.
                     95: *
                     96: *     LWORK (input) INTEGER
                     97: *           The dimension of the array WORK.  LWORK .GE. max(1,N)
                     98: *           is sufficient and delivers very good and sometimes
                     99: *           optimal performance.  However, LWORK as large as 11*N
                    100: *           may be required for optimal performance.  A workspace
                    101: *           query is recommended to determine the optimal workspace
                    102: *           size.
                    103: *
                    104: *           If LWORK = -1, then ZHSEQR does a workspace query.
                    105: *           In this case, ZHSEQR checks the input parameters and
                    106: *           estimates the optimal workspace size for the given
                    107: *           values of N, ILO and IHI.  The estimate is returned
                    108: *           in WORK(1).  No error message related to LWORK is
                    109: *           issued by XERBLA.  Neither H nor Z are accessed.
                    110: *
                    111: *
                    112: *     INFO  (output) INTEGER
                    113: *             =  0:  successful exit
                    114: *           .LT. 0:  if INFO = -i, the i-th argument had an illegal
                    115: *                    value
                    116: *           .GT. 0:  if INFO = i, ZHSEQR failed to compute all of
                    117: *                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
                    118: *                and WI contain those eigenvalues which have been
                    119: *                successfully computed.  (Failures are rare.)
                    120: *
                    121: *                If INFO .GT. 0 and JOB = 'E', then on exit, the
                    122: *                remaining unconverged eigenvalues are the eigen-
                    123: *                values of the upper Hessenberg matrix rows and
                    124: *                columns ILO through INFO of the final, output
                    125: *                value of H.
                    126: *
                    127: *                If INFO .GT. 0 and JOB   = 'S', then on exit
                    128: *
                    129: *           (*)  (initial value of H)*U  = U*(final value of H)
                    130: *
                    131: *                where U is a unitary matrix.  The final
                    132: *                value of  H is upper Hessenberg and triangular in
                    133: *                rows and columns INFO+1 through IHI.
                    134: *
                    135: *                If INFO .GT. 0 and COMPZ = 'V', then on exit
                    136: *
                    137: *                  (final value of Z)  =  (initial value of Z)*U
                    138: *
                    139: *                where U is the unitary matrix in (*) (regard-
                    140: *                less of the value of JOB.)
                    141: *
                    142: *                If INFO .GT. 0 and COMPZ = 'I', then on exit
                    143: *                      (final value of Z)  = U
                    144: *                where U is the unitary matrix in (*) (regard-
                    145: *                less of the value of JOB.)
                    146: *
                    147: *                If INFO .GT. 0 and COMPZ = 'N', then Z is not
                    148: *                accessed.
                    149: *
                    150: *     ================================================================
                    151: *             Default values supplied by
                    152: *             ILAENV(ISPEC,'ZHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
                    153: *             It is suggested that these defaults be adjusted in order
                    154: *             to attain best performance in each particular
                    155: *             computational environment.
                    156: *
                    157: *            ISPEC=12: The ZLAHQR vs ZLAQR0 crossover point.
                    158: *                      Default: 75. (Must be at least 11.)
                    159: *
                    160: *            ISPEC=13: Recommended deflation window size.
                    161: *                      This depends on ILO, IHI and NS.  NS is the
                    162: *                      number of simultaneous shifts returned
                    163: *                      by ILAENV(ISPEC=15).  (See ISPEC=15 below.)
                    164: *                      The default for (IHI-ILO+1).LE.500 is NS.
                    165: *                      The default for (IHI-ILO+1).GT.500 is 3*NS/2.
                    166: *
                    167: *            ISPEC=14: Nibble crossover point. (See IPARMQ for
                    168: *                      details.)  Default: 14% of deflation window
                    169: *                      size.
                    170: *
                    171: *            ISPEC=15: Number of simultaneous shifts in a multishift
                    172: *                      QR iteration.
                    173: *
                    174: *                      If IHI-ILO+1 is ...
                    175: *
                    176: *                      greater than      ...but less    ... the
                    177: *                      or equal to ...      than        default is
                    178: *
                    179: *                           1               30          NS =   2(+)
                    180: *                          30               60          NS =   4(+)
                    181: *                          60              150          NS =  10(+)
                    182: *                         150              590          NS =  **
                    183: *                         590             3000          NS =  64
                    184: *                        3000             6000          NS = 128
                    185: *                        6000             infinity      NS = 256
                    186: *
                    187: *                  (+)  By default some or all matrices of this order
                    188: *                       are passed to the implicit double shift routine
                    189: *                       ZLAHQR and this parameter is ignored.  See
                    190: *                       ISPEC=12 above and comments in IPARMQ for
                    191: *                       details.
                    192: *
                    193: *                 (**)  The asterisks (**) indicate an ad-hoc
                    194: *                       function of N increasing from 10 to 64.
                    195: *
                    196: *            ISPEC=16: Select structured matrix multiply.
                    197: *                      If the number of simultaneous shifts (specified
                    198: *                      by ISPEC=15) is less than 14, then the default
                    199: *                      for ISPEC=16 is 0.  Otherwise the default for
                    200: *                      ISPEC=16 is 2.
                    201: *
                    202: *     ================================================================
                    203: *     Based on contributions by
                    204: *        Karen Braman and Ralph Byers, Department of Mathematics,
                    205: *        University of Kansas, USA
                    206: *
                    207: *     ================================================================
                    208: *     References:
                    209: *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
                    210: *       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
                    211: *       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
                    212: *       929--947, 2002.
                    213: *
                    214: *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
                    215: *       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
                    216: *       of Matrix Analysis, volume 23, pages 948--973, 2002.
                    217: *
                    218: *     ================================================================
                    219: *     .. Parameters ..
                    220: *
                    221: *     ==== Matrices of order NTINY or smaller must be processed by
                    222: *     .    ZLAHQR because of insufficient subdiagonal scratch space.
                    223: *     .    (This is a hard limit.) ====
                    224:       INTEGER            NTINY
                    225:       PARAMETER          ( NTINY = 11 )
                    226: *
                    227: *     ==== NL allocates some local workspace to help small matrices
                    228: *     .    through a rare ZLAHQR failure.  NL .GT. NTINY = 11 is
                    229: *     .    required and NL .LE. NMIN = ILAENV(ISPEC=12,...) is recom-
                    230: *     .    mended.  (The default value of NMIN is 75.)  Using NL = 49
                    231: *     .    allows up to six simultaneous shifts and a 16-by-16
                    232: *     .    deflation window.  ====
                    233:       INTEGER            NL
                    234:       PARAMETER          ( NL = 49 )
                    235:       COMPLEX*16         ZERO, ONE
                    236:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
                    237:      $                   ONE = ( 1.0d0, 0.0d0 ) )
                    238:       DOUBLE PRECISION   RZERO
                    239:       PARAMETER          ( RZERO = 0.0d0 )
                    240: *     ..
                    241: *     .. Local Arrays ..
                    242:       COMPLEX*16         HL( NL, NL ), WORKL( NL )
                    243: *     ..
                    244: *     .. Local Scalars ..
                    245:       INTEGER            KBOT, NMIN
                    246:       LOGICAL            INITZ, LQUERY, WANTT, WANTZ
                    247: *     ..
                    248: *     .. External Functions ..
                    249:       INTEGER            ILAENV
                    250:       LOGICAL            LSAME
                    251:       EXTERNAL           ILAENV, LSAME
                    252: *     ..
                    253: *     .. External Subroutines ..
                    254:       EXTERNAL           XERBLA, ZCOPY, ZLACPY, ZLAHQR, ZLAQR0, ZLASET
                    255: *     ..
                    256: *     .. Intrinsic Functions ..
                    257:       INTRINSIC          DBLE, DCMPLX, MAX, MIN
                    258: *     ..
                    259: *     .. Executable Statements ..
                    260: *
                    261: *     ==== Decode and check the input parameters. ====
                    262: *
                    263:       WANTT = LSAME( JOB, 'S' )
                    264:       INITZ = LSAME( COMPZ, 'I' )
                    265:       WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
                    266:       WORK( 1 ) = DCMPLX( DBLE( MAX( 1, N ) ), RZERO )
                    267:       LQUERY = LWORK.EQ.-1
                    268: *
                    269:       INFO = 0
                    270:       IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN
                    271:          INFO = -1
                    272:       ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
                    273:          INFO = -2
                    274:       ELSE IF( N.LT.0 ) THEN
                    275:          INFO = -3
                    276:       ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
                    277:          INFO = -4
                    278:       ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
                    279:          INFO = -5
                    280:       ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
                    281:          INFO = -7
                    282:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
                    283:          INFO = -10
                    284:       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
                    285:          INFO = -12
                    286:       END IF
                    287: *
                    288:       IF( INFO.NE.0 ) THEN
                    289: *
                    290: *        ==== Quick return in case of invalid argument. ====
                    291: *
                    292:          CALL XERBLA( 'ZHSEQR', -INFO )
                    293:          RETURN
                    294: *
                    295:       ELSE IF( N.EQ.0 ) THEN
                    296: *
                    297: *        ==== Quick return in case N = 0; nothing to do. ====
                    298: *
                    299:          RETURN
                    300: *
                    301:       ELSE IF( LQUERY ) THEN
                    302: *
                    303: *        ==== Quick return in case of a workspace query ====
                    304: *
                    305:          CALL ZLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILO, IHI, Z,
                    306:      $                LDZ, WORK, LWORK, INFO )
                    307: *        ==== Ensure reported workspace size is backward-compatible with
                    308: *        .    previous LAPACK versions. ====
                    309:          WORK( 1 ) = DCMPLX( MAX( DBLE( WORK( 1 ) ), DBLE( MAX( 1,
                    310:      $               N ) ) ), RZERO )
                    311:          RETURN
                    312: *
                    313:       ELSE
                    314: *
                    315: *        ==== copy eigenvalues isolated by ZGEBAL ====
                    316: *
                    317:          IF( ILO.GT.1 )
                    318:      $      CALL ZCOPY( ILO-1, H, LDH+1, W, 1 )
                    319:          IF( IHI.LT.N )
                    320:      $      CALL ZCOPY( N-IHI, H( IHI+1, IHI+1 ), LDH+1, W( IHI+1 ), 1 )
                    321: *
                    322: *        ==== Initialize Z, if requested ====
                    323: *
                    324:          IF( INITZ )
                    325:      $      CALL ZLASET( 'A', N, N, ZERO, ONE, Z, LDZ )
                    326: *
                    327: *        ==== Quick return if possible ====
                    328: *
                    329:          IF( ILO.EQ.IHI ) THEN
                    330:             W( ILO ) = H( ILO, ILO )
                    331:             RETURN
                    332:          END IF
                    333: *
                    334: *        ==== ZLAHQR/ZLAQR0 crossover point ====
                    335: *
                    336:          NMIN = ILAENV( 12, 'ZHSEQR', JOB( : 1 ) // COMPZ( : 1 ), N,
                    337:      $          ILO, IHI, LWORK )
                    338:          NMIN = MAX( NTINY, NMIN )
                    339: *
                    340: *        ==== ZLAQR0 for big matrices; ZLAHQR for small ones ====
                    341: *
                    342:          IF( N.GT.NMIN ) THEN
                    343:             CALL ZLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILO, IHI,
                    344:      $                   Z, LDZ, WORK, LWORK, INFO )
                    345:          ELSE
                    346: *
                    347: *           ==== Small matrix ====
                    348: *
                    349:             CALL ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILO, IHI,
                    350:      $                   Z, LDZ, INFO )
                    351: *
                    352:             IF( INFO.GT.0 ) THEN
                    353: *
                    354: *              ==== A rare ZLAHQR failure!  ZLAQR0 sometimes succeeds
                    355: *              .    when ZLAHQR fails. ====
                    356: *
                    357:                KBOT = INFO
                    358: *
                    359:                IF( N.GE.NL ) THEN
                    360: *
                    361: *                 ==== Larger matrices have enough subdiagonal scratch
                    362: *                 .    space to call ZLAQR0 directly. ====
                    363: *
                    364:                   CALL ZLAQR0( WANTT, WANTZ, N, ILO, KBOT, H, LDH, W,
                    365:      $                         ILO, IHI, Z, LDZ, WORK, LWORK, INFO )
                    366: *
                    367:                ELSE
                    368: *
                    369: *                 ==== Tiny matrices don't have enough subdiagonal
                    370: *                 .    scratch space to benefit from ZLAQR0.  Hence,
                    371: *                 .    tiny matrices must be copied into a larger
                    372: *                 .    array before calling ZLAQR0. ====
                    373: *
                    374:                   CALL ZLACPY( 'A', N, N, H, LDH, HL, NL )
                    375:                   HL( N+1, N ) = ZERO
                    376:                   CALL ZLASET( 'A', NL, NL-N, ZERO, ZERO, HL( 1, N+1 ),
                    377:      $                         NL )
                    378:                   CALL ZLAQR0( WANTT, WANTZ, NL, ILO, KBOT, HL, NL, W,
                    379:      $                         ILO, IHI, Z, LDZ, WORKL, NL, INFO )
                    380:                   IF( WANTT .OR. INFO.NE.0 )
                    381:      $               CALL ZLACPY( 'A', N, N, HL, NL, H, LDH )
                    382:                END IF
                    383:             END IF
                    384:          END IF
                    385: *
                    386: *        ==== Clear out the trash, if necessary. ====
                    387: *
                    388:          IF( ( WANTT .OR. INFO.NE.0 ) .AND. N.GT.2 )
                    389:      $      CALL ZLASET( 'L', N-2, N-2, ZERO, ZERO, H( 3, 1 ), LDH )
                    390: *
                    391: *        ==== Ensure reported workspace size is backward-compatible with
                    392: *        .    previous LAPACK versions. ====
                    393: *
                    394:          WORK( 1 ) = DCMPLX( MAX( DBLE( MAX( 1, N ) ),
                    395:      $               DBLE( WORK( 1 ) ) ), RZERO )
                    396:       END IF
                    397: *
                    398: *     ==== End of ZHSEQR ====
                    399: *
                    400:       END

CVSweb interface <joel.bertrand@systella.fr>