Annotation of rpl/lapack/lapack/zhseqr.f, revision 1.20

1.9       bertrand    1: *> \brief \b ZHSEQR
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZHSEQR + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhseqr.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhseqr.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhseqr.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ,
                     22: *                          WORK, LWORK, INFO )
1.16      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
                     26: *       CHARACTER          COMPZ, JOB
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
                     30: *       ..
1.16      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *>    ZHSEQR computes the eigenvalues of a Hessenberg matrix H
                     39: *>    and, optionally, the matrices T and Z from the Schur decomposition
                     40: *>    H = Z T Z**H, where T is an upper triangular matrix (the
                     41: *>    Schur form), and Z is the unitary matrix of Schur vectors.
                     42: *>
                     43: *>    Optionally Z may be postmultiplied into an input unitary
                     44: *>    matrix Q so that this routine can give the Schur factorization
                     45: *>    of a matrix A which has been reduced to the Hessenberg form H
1.13      bertrand   46: *>    by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*T*(QZ)**H.
1.9       bertrand   47: *> \endverbatim
                     48: *
                     49: *  Arguments:
                     50: *  ==========
                     51: *
                     52: *> \param[in] JOB
                     53: *> \verbatim
                     54: *>          JOB is CHARACTER*1
                     55: *>           = 'E':  compute eigenvalues only;
                     56: *>           = 'S':  compute eigenvalues and the Schur form T.
                     57: *> \endverbatim
                     58: *>
                     59: *> \param[in] COMPZ
                     60: *> \verbatim
                     61: *>          COMPZ is CHARACTER*1
                     62: *>           = 'N':  no Schur vectors are computed;
                     63: *>           = 'I':  Z is initialized to the unit matrix and the matrix Z
                     64: *>                   of Schur vectors of H is returned;
                     65: *>           = 'V':  Z must contain an unitary matrix Q on entry, and
                     66: *>                   the product Q*Z is returned.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] N
                     70: *> \verbatim
                     71: *>          N is INTEGER
1.19      bertrand   72: *>           The order of the matrix H.  N >= 0.
1.9       bertrand   73: *> \endverbatim
                     74: *>
                     75: *> \param[in] ILO
                     76: *> \verbatim
                     77: *>          ILO is INTEGER
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] IHI
                     81: *> \verbatim
                     82: *>          IHI is INTEGER
                     83: *>
                     84: *>           It is assumed that H is already upper triangular in rows
                     85: *>           and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
                     86: *>           set by a previous call to ZGEBAL, and then passed to ZGEHRD
                     87: *>           when the matrix output by ZGEBAL is reduced to Hessenberg
                     88: *>           form. Otherwise ILO and IHI should be set to 1 and N
1.19      bertrand   89: *>           respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
1.9       bertrand   90: *>           If N = 0, then ILO = 1 and IHI = 0.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in,out] H
                     94: *> \verbatim
                     95: *>          H is COMPLEX*16 array, dimension (LDH,N)
                     96: *>           On entry, the upper Hessenberg matrix H.
                     97: *>           On exit, if INFO = 0 and JOB = 'S', H contains the upper
                     98: *>           triangular matrix T from the Schur decomposition (the
                     99: *>           Schur form). If INFO = 0 and JOB = 'E', the contents of
                    100: *>           H are unspecified on exit.  (The output value of H when
1.19      bertrand  101: *>           INFO > 0 is given under the description of INFO below.)
1.9       bertrand  102: *>
                    103: *>           Unlike earlier versions of ZHSEQR, this subroutine may
1.19      bertrand  104: *>           explicitly H(i,j) = 0 for i > j and j = 1, 2, ... ILO-1
1.9       bertrand  105: *>           or j = IHI+1, IHI+2, ... N.
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[in] LDH
                    109: *> \verbatim
                    110: *>          LDH is INTEGER
1.19      bertrand  111: *>           The leading dimension of the array H. LDH >= max(1,N).
1.9       bertrand  112: *> \endverbatim
                    113: *>
                    114: *> \param[out] W
                    115: *> \verbatim
                    116: *>          W is COMPLEX*16 array, dimension (N)
                    117: *>           The computed eigenvalues. If JOB = 'S', the eigenvalues are
                    118: *>           stored in the same order as on the diagonal of the Schur
                    119: *>           form returned in H, with W(i) = H(i,i).
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in,out] Z
                    123: *> \verbatim
                    124: *>          Z is COMPLEX*16 array, dimension (LDZ,N)
                    125: *>           If COMPZ = 'N', Z is not referenced.
                    126: *>           If COMPZ = 'I', on entry Z need not be set and on exit,
                    127: *>           if INFO = 0, Z contains the unitary matrix Z of the Schur
                    128: *>           vectors of H.  If COMPZ = 'V', on entry Z must contain an
                    129: *>           N-by-N matrix Q, which is assumed to be equal to the unit
                    130: *>           matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
                    131: *>           if INFO = 0, Z contains Q*Z.
                    132: *>           Normally Q is the unitary matrix generated by ZUNGHR
                    133: *>           after the call to ZGEHRD which formed the Hessenberg matrix
1.19      bertrand  134: *>           H. (The output value of Z when INFO > 0 is given under
1.9       bertrand  135: *>           the description of INFO below.)
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[in] LDZ
                    139: *> \verbatim
                    140: *>          LDZ is INTEGER
                    141: *>           The leading dimension of the array Z.  if COMPZ = 'I' or
1.19      bertrand  142: *>           COMPZ = 'V', then LDZ >= MAX(1,N).  Otherwise, LDZ >= 1.
1.9       bertrand  143: *> \endverbatim
                    144: *>
                    145: *> \param[out] WORK
                    146: *> \verbatim
                    147: *>          WORK is COMPLEX*16 array, dimension (LWORK)
                    148: *>           On exit, if INFO = 0, WORK(1) returns an estimate of
                    149: *>           the optimal value for LWORK.
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[in] LWORK
                    153: *> \verbatim
                    154: *>          LWORK is INTEGER
1.19      bertrand  155: *>           The dimension of the array WORK.  LWORK >= max(1,N)
1.9       bertrand  156: *>           is sufficient and delivers very good and sometimes
                    157: *>           optimal performance.  However, LWORK as large as 11*N
                    158: *>           may be required for optimal performance.  A workspace
                    159: *>           query is recommended to determine the optimal workspace
                    160: *>           size.
                    161: *>
                    162: *>           If LWORK = -1, then ZHSEQR does a workspace query.
                    163: *>           In this case, ZHSEQR checks the input parameters and
                    164: *>           estimates the optimal workspace size for the given
                    165: *>           values of N, ILO and IHI.  The estimate is returned
                    166: *>           in WORK(1).  No error message related to LWORK is
                    167: *>           issued by XERBLA.  Neither H nor Z are accessed.
                    168: *> \endverbatim
                    169: *>
                    170: *> \param[out] INFO
                    171: *> \verbatim
                    172: *>          INFO is INTEGER
1.19      bertrand  173: *>             = 0:  successful exit
                    174: *>             < 0:  if INFO = -i, the i-th argument had an illegal
1.9       bertrand  175: *>                    value
1.19      bertrand  176: *>             > 0:  if INFO = i, ZHSEQR failed to compute all of
                    177: *>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of W
                    178: *>                contain those eigenvalues which have been
1.9       bertrand  179: *>                successfully computed.  (Failures are rare.)
                    180: *>
1.19      bertrand  181: *>                If INFO > 0 and JOB = 'E', then on exit, the
1.9       bertrand  182: *>                remaining unconverged eigenvalues are the eigen-
                    183: *>                values of the upper Hessenberg matrix rows and
                    184: *>                columns ILO through INFO of the final, output
                    185: *>                value of H.
                    186: *>
1.19      bertrand  187: *>                If INFO > 0 and JOB   = 'S', then on exit
1.9       bertrand  188: *>
                    189: *>           (*)  (initial value of H)*U  = U*(final value of H)
                    190: *>
                    191: *>                where U is a unitary matrix.  The final
                    192: *>                value of  H is upper Hessenberg and triangular in
                    193: *>                rows and columns INFO+1 through IHI.
                    194: *>
1.19      bertrand  195: *>                If INFO > 0 and COMPZ = 'V', then on exit
1.9       bertrand  196: *>
                    197: *>                  (final value of Z)  =  (initial value of Z)*U
                    198: *>
                    199: *>                where U is the unitary matrix in (*) (regard-
                    200: *>                less of the value of JOB.)
                    201: *>
1.19      bertrand  202: *>                If INFO > 0 and COMPZ = 'I', then on exit
1.9       bertrand  203: *>                      (final value of Z)  = U
                    204: *>                where U is the unitary matrix in (*) (regard-
                    205: *>                less of the value of JOB.)
                    206: *>
1.19      bertrand  207: *>                If INFO > 0 and COMPZ = 'N', then Z is not
1.9       bertrand  208: *>                accessed.
                    209: *> \endverbatim
                    210: *
                    211: *  Authors:
                    212: *  ========
                    213: *
1.16      bertrand  214: *> \author Univ. of Tennessee
                    215: *> \author Univ. of California Berkeley
                    216: *> \author Univ. of Colorado Denver
                    217: *> \author NAG Ltd.
1.9       bertrand  218: *
                    219: *> \ingroup complex16OTHERcomputational
                    220: *
                    221: *> \par Contributors:
                    222: *  ==================
                    223: *>
                    224: *>       Karen Braman and Ralph Byers, Department of Mathematics,
                    225: *>       University of Kansas, USA
                    226: *
                    227: *> \par Further Details:
                    228: *  =====================
                    229: *>
                    230: *> \verbatim
                    231: *>
                    232: *>             Default values supplied by
                    233: *>             ILAENV(ISPEC,'ZHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
                    234: *>             It is suggested that these defaults be adjusted in order
                    235: *>             to attain best performance in each particular
                    236: *>             computational environment.
                    237: *>
                    238: *>            ISPEC=12: The ZLAHQR vs ZLAQR0 crossover point.
                    239: *>                      Default: 75. (Must be at least 11.)
                    240: *>
                    241: *>            ISPEC=13: Recommended deflation window size.
                    242: *>                      This depends on ILO, IHI and NS.  NS is the
                    243: *>                      number of simultaneous shifts returned
                    244: *>                      by ILAENV(ISPEC=15).  (See ISPEC=15 below.)
1.19      bertrand  245: *>                      The default for (IHI-ILO+1) <= 500 is NS.
                    246: *>                      The default for (IHI-ILO+1) >  500 is 3*NS/2.
1.9       bertrand  247: *>
                    248: *>            ISPEC=14: Nibble crossover point. (See IPARMQ for
                    249: *>                      details.)  Default: 14% of deflation window
                    250: *>                      size.
                    251: *>
                    252: *>            ISPEC=15: Number of simultaneous shifts in a multishift
                    253: *>                      QR iteration.
                    254: *>
                    255: *>                      If IHI-ILO+1 is ...
                    256: *>
                    257: *>                      greater than      ...but less    ... the
                    258: *>                      or equal to ...      than        default is
                    259: *>
                    260: *>                           1               30          NS =   2(+)
                    261: *>                          30               60          NS =   4(+)
                    262: *>                          60              150          NS =  10(+)
                    263: *>                         150              590          NS =  **
                    264: *>                         590             3000          NS =  64
                    265: *>                        3000             6000          NS = 128
                    266: *>                        6000             infinity      NS = 256
                    267: *>
                    268: *>                  (+)  By default some or all matrices of this order
                    269: *>                       are passed to the implicit double shift routine
                    270: *>                       ZLAHQR and this parameter is ignored.  See
                    271: *>                       ISPEC=12 above and comments in IPARMQ for
                    272: *>                       details.
                    273: *>
                    274: *>                 (**)  The asterisks (**) indicate an ad-hoc
                    275: *>                       function of N increasing from 10 to 64.
                    276: *>
                    277: *>            ISPEC=16: Select structured matrix multiply.
                    278: *>                      If the number of simultaneous shifts (specified
                    279: *>                      by ISPEC=15) is less than 14, then the default
                    280: *>                      for ISPEC=16 is 0.  Otherwise the default for
                    281: *>                      ISPEC=16 is 2.
                    282: *> \endverbatim
                    283: *
                    284: *> \par References:
                    285: *  ================
                    286: *>
                    287: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
                    288: *>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
                    289: *>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
                    290: *>       929--947, 2002.
                    291: *> \n
                    292: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
                    293: *>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
                    294: *>       of Matrix Analysis, volume 23, pages 948--973, 2002.
                    295: *
                    296: *  =====================================================================
1.1       bertrand  297:       SUBROUTINE ZHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ,
                    298:      $                   WORK, LWORK, INFO )
                    299: *
1.20    ! bertrand  300: *  -- LAPACK computational routine --
1.9       bertrand  301: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    302: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.1       bertrand  303: *
                    304: *     .. Scalar Arguments ..
                    305:       INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
                    306:       CHARACTER          COMPZ, JOB
                    307: *     ..
                    308: *     .. Array Arguments ..
                    309:       COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
                    310: *     ..
                    311: *
1.9       bertrand  312: *  =====================================================================
1.1       bertrand  313: *
                    314: *     .. Parameters ..
                    315: *
                    316: *     ==== Matrices of order NTINY or smaller must be processed by
                    317: *     .    ZLAHQR because of insufficient subdiagonal scratch space.
                    318: *     .    (This is a hard limit.) ====
                    319:       INTEGER            NTINY
1.20    ! bertrand  320:       PARAMETER          ( NTINY = 15 )
1.1       bertrand  321: *
                    322: *     ==== NL allocates some local workspace to help small matrices
1.20    ! bertrand  323: *     .    through a rare ZLAHQR failure.  NL > NTINY = 15 is
1.19      bertrand  324: *     .    required and NL <= NMIN = ILAENV(ISPEC=12,...) is recom-
1.1       bertrand  325: *     .    mended.  (The default value of NMIN is 75.)  Using NL = 49
                    326: *     .    allows up to six simultaneous shifts and a 16-by-16
                    327: *     .    deflation window.  ====
                    328:       INTEGER            NL
                    329:       PARAMETER          ( NL = 49 )
                    330:       COMPLEX*16         ZERO, ONE
                    331:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
                    332:      $                   ONE = ( 1.0d0, 0.0d0 ) )
                    333:       DOUBLE PRECISION   RZERO
                    334:       PARAMETER          ( RZERO = 0.0d0 )
                    335: *     ..
                    336: *     .. Local Arrays ..
                    337:       COMPLEX*16         HL( NL, NL ), WORKL( NL )
                    338: *     ..
                    339: *     .. Local Scalars ..
                    340:       INTEGER            KBOT, NMIN
                    341:       LOGICAL            INITZ, LQUERY, WANTT, WANTZ
                    342: *     ..
                    343: *     .. External Functions ..
                    344:       INTEGER            ILAENV
                    345:       LOGICAL            LSAME
                    346:       EXTERNAL           ILAENV, LSAME
                    347: *     ..
                    348: *     .. External Subroutines ..
                    349:       EXTERNAL           XERBLA, ZCOPY, ZLACPY, ZLAHQR, ZLAQR0, ZLASET
                    350: *     ..
                    351: *     .. Intrinsic Functions ..
                    352:       INTRINSIC          DBLE, DCMPLX, MAX, MIN
                    353: *     ..
                    354: *     .. Executable Statements ..
                    355: *
                    356: *     ==== Decode and check the input parameters. ====
                    357: *
                    358:       WANTT = LSAME( JOB, 'S' )
                    359:       INITZ = LSAME( COMPZ, 'I' )
                    360:       WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
                    361:       WORK( 1 ) = DCMPLX( DBLE( MAX( 1, N ) ), RZERO )
                    362:       LQUERY = LWORK.EQ.-1
                    363: *
                    364:       INFO = 0
                    365:       IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN
                    366:          INFO = -1
                    367:       ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
                    368:          INFO = -2
                    369:       ELSE IF( N.LT.0 ) THEN
                    370:          INFO = -3
                    371:       ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
                    372:          INFO = -4
                    373:       ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
                    374:          INFO = -5
                    375:       ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
                    376:          INFO = -7
                    377:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
                    378:          INFO = -10
                    379:       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
                    380:          INFO = -12
                    381:       END IF
                    382: *
                    383:       IF( INFO.NE.0 ) THEN
                    384: *
                    385: *        ==== Quick return in case of invalid argument. ====
                    386: *
                    387:          CALL XERBLA( 'ZHSEQR', -INFO )
                    388:          RETURN
                    389: *
                    390:       ELSE IF( N.EQ.0 ) THEN
                    391: *
                    392: *        ==== Quick return in case N = 0; nothing to do. ====
                    393: *
                    394:          RETURN
                    395: *
                    396:       ELSE IF( LQUERY ) THEN
                    397: *
                    398: *        ==== Quick return in case of a workspace query ====
                    399: *
                    400:          CALL ZLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILO, IHI, Z,
                    401:      $                LDZ, WORK, LWORK, INFO )
                    402: *        ==== Ensure reported workspace size is backward-compatible with
                    403: *        .    previous LAPACK versions. ====
                    404:          WORK( 1 ) = DCMPLX( MAX( DBLE( WORK( 1 ) ), DBLE( MAX( 1,
                    405:      $               N ) ) ), RZERO )
                    406:          RETURN
                    407: *
                    408:       ELSE
                    409: *
                    410: *        ==== copy eigenvalues isolated by ZGEBAL ====
                    411: *
                    412:          IF( ILO.GT.1 )
                    413:      $      CALL ZCOPY( ILO-1, H, LDH+1, W, 1 )
                    414:          IF( IHI.LT.N )
                    415:      $      CALL ZCOPY( N-IHI, H( IHI+1, IHI+1 ), LDH+1, W( IHI+1 ), 1 )
                    416: *
                    417: *        ==== Initialize Z, if requested ====
                    418: *
                    419:          IF( INITZ )
                    420:      $      CALL ZLASET( 'A', N, N, ZERO, ONE, Z, LDZ )
                    421: *
                    422: *        ==== Quick return if possible ====
                    423: *
                    424:          IF( ILO.EQ.IHI ) THEN
                    425:             W( ILO ) = H( ILO, ILO )
                    426:             RETURN
                    427:          END IF
                    428: *
                    429: *        ==== ZLAHQR/ZLAQR0 crossover point ====
                    430: *
                    431:          NMIN = ILAENV( 12, 'ZHSEQR', JOB( : 1 ) // COMPZ( : 1 ), N,
                    432:      $          ILO, IHI, LWORK )
                    433:          NMIN = MAX( NTINY, NMIN )
                    434: *
                    435: *        ==== ZLAQR0 for big matrices; ZLAHQR for small ones ====
                    436: *
                    437:          IF( N.GT.NMIN ) THEN
                    438:             CALL ZLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILO, IHI,
                    439:      $                   Z, LDZ, WORK, LWORK, INFO )
                    440:          ELSE
                    441: *
                    442: *           ==== Small matrix ====
                    443: *
                    444:             CALL ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILO, IHI,
                    445:      $                   Z, LDZ, INFO )
                    446: *
                    447:             IF( INFO.GT.0 ) THEN
                    448: *
                    449: *              ==== A rare ZLAHQR failure!  ZLAQR0 sometimes succeeds
                    450: *              .    when ZLAHQR fails. ====
                    451: *
                    452:                KBOT = INFO
                    453: *
                    454:                IF( N.GE.NL ) THEN
                    455: *
                    456: *                 ==== Larger matrices have enough subdiagonal scratch
                    457: *                 .    space to call ZLAQR0 directly. ====
                    458: *
                    459:                   CALL ZLAQR0( WANTT, WANTZ, N, ILO, KBOT, H, LDH, W,
                    460:      $                         ILO, IHI, Z, LDZ, WORK, LWORK, INFO )
                    461: *
                    462:                ELSE
                    463: *
                    464: *                 ==== Tiny matrices don't have enough subdiagonal
                    465: *                 .    scratch space to benefit from ZLAQR0.  Hence,
                    466: *                 .    tiny matrices must be copied into a larger
                    467: *                 .    array before calling ZLAQR0. ====
                    468: *
                    469:                   CALL ZLACPY( 'A', N, N, H, LDH, HL, NL )
                    470:                   HL( N+1, N ) = ZERO
                    471:                   CALL ZLASET( 'A', NL, NL-N, ZERO, ZERO, HL( 1, N+1 ),
                    472:      $                         NL )
                    473:                   CALL ZLAQR0( WANTT, WANTZ, NL, ILO, KBOT, HL, NL, W,
                    474:      $                         ILO, IHI, Z, LDZ, WORKL, NL, INFO )
                    475:                   IF( WANTT .OR. INFO.NE.0 )
                    476:      $               CALL ZLACPY( 'A', N, N, HL, NL, H, LDH )
                    477:                END IF
                    478:             END IF
                    479:          END IF
                    480: *
                    481: *        ==== Clear out the trash, if necessary. ====
                    482: *
                    483:          IF( ( WANTT .OR. INFO.NE.0 ) .AND. N.GT.2 )
                    484:      $      CALL ZLASET( 'L', N-2, N-2, ZERO, ZERO, H( 3, 1 ), LDH )
                    485: *
                    486: *        ==== Ensure reported workspace size is backward-compatible with
                    487: *        .    previous LAPACK versions. ====
                    488: *
                    489:          WORK( 1 ) = DCMPLX( MAX( DBLE( MAX( 1, N ) ),
                    490:      $               DBLE( WORK( 1 ) ) ), RZERO )
                    491:       END IF
                    492: *
                    493: *     ==== End of ZHSEQR ====
                    494: *
                    495:       END

CVSweb interface <joel.bertrand@systella.fr>