Annotation of rpl/lapack/lapack/zhseqr.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ,
        !             2:      $                   WORK, LWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
        !            10:       CHARACTER          COMPZ, JOB
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
        !            14: *     ..
        !            15: *     Purpose
        !            16: *     =======
        !            17: *
        !            18: *     ZHSEQR computes the eigenvalues of a Hessenberg matrix H
        !            19: *     and, optionally, the matrices T and Z from the Schur decomposition
        !            20: *     H = Z T Z**H, where T is an upper triangular matrix (the
        !            21: *     Schur form), and Z is the unitary matrix of Schur vectors.
        !            22: *
        !            23: *     Optionally Z may be postmultiplied into an input unitary
        !            24: *     matrix Q so that this routine can give the Schur factorization
        !            25: *     of a matrix A which has been reduced to the Hessenberg form H
        !            26: *     by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*H*(QZ)**H.
        !            27: *
        !            28: *     Arguments
        !            29: *     =========
        !            30: *
        !            31: *     JOB   (input) CHARACTER*1
        !            32: *           = 'E':  compute eigenvalues only;
        !            33: *           = 'S':  compute eigenvalues and the Schur form T.
        !            34: *
        !            35: *     COMPZ (input) CHARACTER*1
        !            36: *           = 'N':  no Schur vectors are computed;
        !            37: *           = 'I':  Z is initialized to the unit matrix and the matrix Z
        !            38: *                   of Schur vectors of H is returned;
        !            39: *           = 'V':  Z must contain an unitary matrix Q on entry, and
        !            40: *                   the product Q*Z is returned.
        !            41: *
        !            42: *     N     (input) INTEGER
        !            43: *           The order of the matrix H.  N .GE. 0.
        !            44: *
        !            45: *     ILO   (input) INTEGER
        !            46: *     IHI   (input) INTEGER
        !            47: *           It is assumed that H is already upper triangular in rows
        !            48: *           and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
        !            49: *           set by a previous call to ZGEBAL, and then passed to ZGEHRD
        !            50: *           when the matrix output by ZGEBAL is reduced to Hessenberg
        !            51: *           form. Otherwise ILO and IHI should be set to 1 and N
        !            52: *           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
        !            53: *           If N = 0, then ILO = 1 and IHI = 0.
        !            54: *
        !            55: *     H     (input/output) COMPLEX*16 array, dimension (LDH,N)
        !            56: *           On entry, the upper Hessenberg matrix H.
        !            57: *           On exit, if INFO = 0 and JOB = 'S', H contains the upper
        !            58: *           triangular matrix T from the Schur decomposition (the
        !            59: *           Schur form). If INFO = 0 and JOB = 'E', the contents of
        !            60: *           H are unspecified on exit.  (The output value of H when
        !            61: *           INFO.GT.0 is given under the description of INFO below.)
        !            62: *
        !            63: *           Unlike earlier versions of ZHSEQR, this subroutine may
        !            64: *           explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
        !            65: *           or j = IHI+1, IHI+2, ... N.
        !            66: *
        !            67: *     LDH   (input) INTEGER
        !            68: *           The leading dimension of the array H. LDH .GE. max(1,N).
        !            69: *
        !            70: *     W        (output) COMPLEX*16 array, dimension (N)
        !            71: *           The computed eigenvalues. If JOB = 'S', the eigenvalues are
        !            72: *           stored in the same order as on the diagonal of the Schur
        !            73: *           form returned in H, with W(i) = H(i,i).
        !            74: *
        !            75: *     Z     (input/output) COMPLEX*16 array, dimension (LDZ,N)
        !            76: *           If COMPZ = 'N', Z is not referenced.
        !            77: *           If COMPZ = 'I', on entry Z need not be set and on exit,
        !            78: *           if INFO = 0, Z contains the unitary matrix Z of the Schur
        !            79: *           vectors of H.  If COMPZ = 'V', on entry Z must contain an
        !            80: *           N-by-N matrix Q, which is assumed to be equal to the unit
        !            81: *           matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
        !            82: *           if INFO = 0, Z contains Q*Z.
        !            83: *           Normally Q is the unitary matrix generated by ZUNGHR
        !            84: *           after the call to ZGEHRD which formed the Hessenberg matrix
        !            85: *           H. (The output value of Z when INFO.GT.0 is given under
        !            86: *           the description of INFO below.)
        !            87: *
        !            88: *     LDZ   (input) INTEGER
        !            89: *           The leading dimension of the array Z.  if COMPZ = 'I' or
        !            90: *           COMPZ = 'V', then LDZ.GE.MAX(1,N).  Otherwize, LDZ.GE.1.
        !            91: *
        !            92: *     WORK  (workspace/output) COMPLEX*16 array, dimension (LWORK)
        !            93: *           On exit, if INFO = 0, WORK(1) returns an estimate of
        !            94: *           the optimal value for LWORK.
        !            95: *
        !            96: *     LWORK (input) INTEGER
        !            97: *           The dimension of the array WORK.  LWORK .GE. max(1,N)
        !            98: *           is sufficient and delivers very good and sometimes
        !            99: *           optimal performance.  However, LWORK as large as 11*N
        !           100: *           may be required for optimal performance.  A workspace
        !           101: *           query is recommended to determine the optimal workspace
        !           102: *           size.
        !           103: *
        !           104: *           If LWORK = -1, then ZHSEQR does a workspace query.
        !           105: *           In this case, ZHSEQR checks the input parameters and
        !           106: *           estimates the optimal workspace size for the given
        !           107: *           values of N, ILO and IHI.  The estimate is returned
        !           108: *           in WORK(1).  No error message related to LWORK is
        !           109: *           issued by XERBLA.  Neither H nor Z are accessed.
        !           110: *
        !           111: *
        !           112: *     INFO  (output) INTEGER
        !           113: *             =  0:  successful exit
        !           114: *           .LT. 0:  if INFO = -i, the i-th argument had an illegal
        !           115: *                    value
        !           116: *           .GT. 0:  if INFO = i, ZHSEQR failed to compute all of
        !           117: *                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
        !           118: *                and WI contain those eigenvalues which have been
        !           119: *                successfully computed.  (Failures are rare.)
        !           120: *
        !           121: *                If INFO .GT. 0 and JOB = 'E', then on exit, the
        !           122: *                remaining unconverged eigenvalues are the eigen-
        !           123: *                values of the upper Hessenberg matrix rows and
        !           124: *                columns ILO through INFO of the final, output
        !           125: *                value of H.
        !           126: *
        !           127: *                If INFO .GT. 0 and JOB   = 'S', then on exit
        !           128: *
        !           129: *           (*)  (initial value of H)*U  = U*(final value of H)
        !           130: *
        !           131: *                where U is a unitary matrix.  The final
        !           132: *                value of  H is upper Hessenberg and triangular in
        !           133: *                rows and columns INFO+1 through IHI.
        !           134: *
        !           135: *                If INFO .GT. 0 and COMPZ = 'V', then on exit
        !           136: *
        !           137: *                  (final value of Z)  =  (initial value of Z)*U
        !           138: *
        !           139: *                where U is the unitary matrix in (*) (regard-
        !           140: *                less of the value of JOB.)
        !           141: *
        !           142: *                If INFO .GT. 0 and COMPZ = 'I', then on exit
        !           143: *                      (final value of Z)  = U
        !           144: *                where U is the unitary matrix in (*) (regard-
        !           145: *                less of the value of JOB.)
        !           146: *
        !           147: *                If INFO .GT. 0 and COMPZ = 'N', then Z is not
        !           148: *                accessed.
        !           149: *
        !           150: *     ================================================================
        !           151: *             Default values supplied by
        !           152: *             ILAENV(ISPEC,'ZHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
        !           153: *             It is suggested that these defaults be adjusted in order
        !           154: *             to attain best performance in each particular
        !           155: *             computational environment.
        !           156: *
        !           157: *            ISPEC=12: The ZLAHQR vs ZLAQR0 crossover point.
        !           158: *                      Default: 75. (Must be at least 11.)
        !           159: *
        !           160: *            ISPEC=13: Recommended deflation window size.
        !           161: *                      This depends on ILO, IHI and NS.  NS is the
        !           162: *                      number of simultaneous shifts returned
        !           163: *                      by ILAENV(ISPEC=15).  (See ISPEC=15 below.)
        !           164: *                      The default for (IHI-ILO+1).LE.500 is NS.
        !           165: *                      The default for (IHI-ILO+1).GT.500 is 3*NS/2.
        !           166: *
        !           167: *            ISPEC=14: Nibble crossover point. (See IPARMQ for
        !           168: *                      details.)  Default: 14% of deflation window
        !           169: *                      size.
        !           170: *
        !           171: *            ISPEC=15: Number of simultaneous shifts in a multishift
        !           172: *                      QR iteration.
        !           173: *
        !           174: *                      If IHI-ILO+1 is ...
        !           175: *
        !           176: *                      greater than      ...but less    ... the
        !           177: *                      or equal to ...      than        default is
        !           178: *
        !           179: *                           1               30          NS =   2(+)
        !           180: *                          30               60          NS =   4(+)
        !           181: *                          60              150          NS =  10(+)
        !           182: *                         150              590          NS =  **
        !           183: *                         590             3000          NS =  64
        !           184: *                        3000             6000          NS = 128
        !           185: *                        6000             infinity      NS = 256
        !           186: *
        !           187: *                  (+)  By default some or all matrices of this order
        !           188: *                       are passed to the implicit double shift routine
        !           189: *                       ZLAHQR and this parameter is ignored.  See
        !           190: *                       ISPEC=12 above and comments in IPARMQ for
        !           191: *                       details.
        !           192: *
        !           193: *                 (**)  The asterisks (**) indicate an ad-hoc
        !           194: *                       function of N increasing from 10 to 64.
        !           195: *
        !           196: *            ISPEC=16: Select structured matrix multiply.
        !           197: *                      If the number of simultaneous shifts (specified
        !           198: *                      by ISPEC=15) is less than 14, then the default
        !           199: *                      for ISPEC=16 is 0.  Otherwise the default for
        !           200: *                      ISPEC=16 is 2.
        !           201: *
        !           202: *     ================================================================
        !           203: *     Based on contributions by
        !           204: *        Karen Braman and Ralph Byers, Department of Mathematics,
        !           205: *        University of Kansas, USA
        !           206: *
        !           207: *     ================================================================
        !           208: *     References:
        !           209: *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
        !           210: *       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
        !           211: *       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
        !           212: *       929--947, 2002.
        !           213: *
        !           214: *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
        !           215: *       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
        !           216: *       of Matrix Analysis, volume 23, pages 948--973, 2002.
        !           217: *
        !           218: *     ================================================================
        !           219: *     .. Parameters ..
        !           220: *
        !           221: *     ==== Matrices of order NTINY or smaller must be processed by
        !           222: *     .    ZLAHQR because of insufficient subdiagonal scratch space.
        !           223: *     .    (This is a hard limit.) ====
        !           224:       INTEGER            NTINY
        !           225:       PARAMETER          ( NTINY = 11 )
        !           226: *
        !           227: *     ==== NL allocates some local workspace to help small matrices
        !           228: *     .    through a rare ZLAHQR failure.  NL .GT. NTINY = 11 is
        !           229: *     .    required and NL .LE. NMIN = ILAENV(ISPEC=12,...) is recom-
        !           230: *     .    mended.  (The default value of NMIN is 75.)  Using NL = 49
        !           231: *     .    allows up to six simultaneous shifts and a 16-by-16
        !           232: *     .    deflation window.  ====
        !           233:       INTEGER            NL
        !           234:       PARAMETER          ( NL = 49 )
        !           235:       COMPLEX*16         ZERO, ONE
        !           236:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
        !           237:      $                   ONE = ( 1.0d0, 0.0d0 ) )
        !           238:       DOUBLE PRECISION   RZERO
        !           239:       PARAMETER          ( RZERO = 0.0d0 )
        !           240: *     ..
        !           241: *     .. Local Arrays ..
        !           242:       COMPLEX*16         HL( NL, NL ), WORKL( NL )
        !           243: *     ..
        !           244: *     .. Local Scalars ..
        !           245:       INTEGER            KBOT, NMIN
        !           246:       LOGICAL            INITZ, LQUERY, WANTT, WANTZ
        !           247: *     ..
        !           248: *     .. External Functions ..
        !           249:       INTEGER            ILAENV
        !           250:       LOGICAL            LSAME
        !           251:       EXTERNAL           ILAENV, LSAME
        !           252: *     ..
        !           253: *     .. External Subroutines ..
        !           254:       EXTERNAL           XERBLA, ZCOPY, ZLACPY, ZLAHQR, ZLAQR0, ZLASET
        !           255: *     ..
        !           256: *     .. Intrinsic Functions ..
        !           257:       INTRINSIC          DBLE, DCMPLX, MAX, MIN
        !           258: *     ..
        !           259: *     .. Executable Statements ..
        !           260: *
        !           261: *     ==== Decode and check the input parameters. ====
        !           262: *
        !           263:       WANTT = LSAME( JOB, 'S' )
        !           264:       INITZ = LSAME( COMPZ, 'I' )
        !           265:       WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
        !           266:       WORK( 1 ) = DCMPLX( DBLE( MAX( 1, N ) ), RZERO )
        !           267:       LQUERY = LWORK.EQ.-1
        !           268: *
        !           269:       INFO = 0
        !           270:       IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN
        !           271:          INFO = -1
        !           272:       ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
        !           273:          INFO = -2
        !           274:       ELSE IF( N.LT.0 ) THEN
        !           275:          INFO = -3
        !           276:       ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
        !           277:          INFO = -4
        !           278:       ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
        !           279:          INFO = -5
        !           280:       ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
        !           281:          INFO = -7
        !           282:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
        !           283:          INFO = -10
        !           284:       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
        !           285:          INFO = -12
        !           286:       END IF
        !           287: *
        !           288:       IF( INFO.NE.0 ) THEN
        !           289: *
        !           290: *        ==== Quick return in case of invalid argument. ====
        !           291: *
        !           292:          CALL XERBLA( 'ZHSEQR', -INFO )
        !           293:          RETURN
        !           294: *
        !           295:       ELSE IF( N.EQ.0 ) THEN
        !           296: *
        !           297: *        ==== Quick return in case N = 0; nothing to do. ====
        !           298: *
        !           299:          RETURN
        !           300: *
        !           301:       ELSE IF( LQUERY ) THEN
        !           302: *
        !           303: *        ==== Quick return in case of a workspace query ====
        !           304: *
        !           305:          CALL ZLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILO, IHI, Z,
        !           306:      $                LDZ, WORK, LWORK, INFO )
        !           307: *        ==== Ensure reported workspace size is backward-compatible with
        !           308: *        .    previous LAPACK versions. ====
        !           309:          WORK( 1 ) = DCMPLX( MAX( DBLE( WORK( 1 ) ), DBLE( MAX( 1,
        !           310:      $               N ) ) ), RZERO )
        !           311:          RETURN
        !           312: *
        !           313:       ELSE
        !           314: *
        !           315: *        ==== copy eigenvalues isolated by ZGEBAL ====
        !           316: *
        !           317:          IF( ILO.GT.1 )
        !           318:      $      CALL ZCOPY( ILO-1, H, LDH+1, W, 1 )
        !           319:          IF( IHI.LT.N )
        !           320:      $      CALL ZCOPY( N-IHI, H( IHI+1, IHI+1 ), LDH+1, W( IHI+1 ), 1 )
        !           321: *
        !           322: *        ==== Initialize Z, if requested ====
        !           323: *
        !           324:          IF( INITZ )
        !           325:      $      CALL ZLASET( 'A', N, N, ZERO, ONE, Z, LDZ )
        !           326: *
        !           327: *        ==== Quick return if possible ====
        !           328: *
        !           329:          IF( ILO.EQ.IHI ) THEN
        !           330:             W( ILO ) = H( ILO, ILO )
        !           331:             RETURN
        !           332:          END IF
        !           333: *
        !           334: *        ==== ZLAHQR/ZLAQR0 crossover point ====
        !           335: *
        !           336:          NMIN = ILAENV( 12, 'ZHSEQR', JOB( : 1 ) // COMPZ( : 1 ), N,
        !           337:      $          ILO, IHI, LWORK )
        !           338:          NMIN = MAX( NTINY, NMIN )
        !           339: *
        !           340: *        ==== ZLAQR0 for big matrices; ZLAHQR for small ones ====
        !           341: *
        !           342:          IF( N.GT.NMIN ) THEN
        !           343:             CALL ZLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILO, IHI,
        !           344:      $                   Z, LDZ, WORK, LWORK, INFO )
        !           345:          ELSE
        !           346: *
        !           347: *           ==== Small matrix ====
        !           348: *
        !           349:             CALL ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILO, IHI,
        !           350:      $                   Z, LDZ, INFO )
        !           351: *
        !           352:             IF( INFO.GT.0 ) THEN
        !           353: *
        !           354: *              ==== A rare ZLAHQR failure!  ZLAQR0 sometimes succeeds
        !           355: *              .    when ZLAHQR fails. ====
        !           356: *
        !           357:                KBOT = INFO
        !           358: *
        !           359:                IF( N.GE.NL ) THEN
        !           360: *
        !           361: *                 ==== Larger matrices have enough subdiagonal scratch
        !           362: *                 .    space to call ZLAQR0 directly. ====
        !           363: *
        !           364:                   CALL ZLAQR0( WANTT, WANTZ, N, ILO, KBOT, H, LDH, W,
        !           365:      $                         ILO, IHI, Z, LDZ, WORK, LWORK, INFO )
        !           366: *
        !           367:                ELSE
        !           368: *
        !           369: *                 ==== Tiny matrices don't have enough subdiagonal
        !           370: *                 .    scratch space to benefit from ZLAQR0.  Hence,
        !           371: *                 .    tiny matrices must be copied into a larger
        !           372: *                 .    array before calling ZLAQR0. ====
        !           373: *
        !           374:                   CALL ZLACPY( 'A', N, N, H, LDH, HL, NL )
        !           375:                   HL( N+1, N ) = ZERO
        !           376:                   CALL ZLASET( 'A', NL, NL-N, ZERO, ZERO, HL( 1, N+1 ),
        !           377:      $                         NL )
        !           378:                   CALL ZLAQR0( WANTT, WANTZ, NL, ILO, KBOT, HL, NL, W,
        !           379:      $                         ILO, IHI, Z, LDZ, WORKL, NL, INFO )
        !           380:                   IF( WANTT .OR. INFO.NE.0 )
        !           381:      $               CALL ZLACPY( 'A', N, N, HL, NL, H, LDH )
        !           382:                END IF
        !           383:             END IF
        !           384:          END IF
        !           385: *
        !           386: *        ==== Clear out the trash, if necessary. ====
        !           387: *
        !           388:          IF( ( WANTT .OR. INFO.NE.0 ) .AND. N.GT.2 )
        !           389:      $      CALL ZLASET( 'L', N-2, N-2, ZERO, ZERO, H( 3, 1 ), LDH )
        !           390: *
        !           391: *        ==== Ensure reported workspace size is backward-compatible with
        !           392: *        .    previous LAPACK versions. ====
        !           393: *
        !           394:          WORK( 1 ) = DCMPLX( MAX( DBLE( MAX( 1, N ) ),
        !           395:      $               DBLE( WORK( 1 ) ) ), RZERO )
        !           396:       END IF
        !           397: *
        !           398: *     ==== End of ZHSEQR ====
        !           399: *
        !           400:       END

CVSweb interface <joel.bertrand@systella.fr>