File:  [local] / rpl / lapack / lapack / zhsein.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:27 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZHSEIN
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHSEIN + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhsein.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhsein.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhsein.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL,
   22: *                          LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL,
   23: *                          IFAILR, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          EIGSRC, INITV, SIDE
   27: *       INTEGER            INFO, LDH, LDVL, LDVR, M, MM, N
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       LOGICAL            SELECT( * )
   31: *       INTEGER            IFAILL( * ), IFAILR( * )
   32: *       DOUBLE PRECISION   RWORK( * )
   33: *       COMPLEX*16         H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
   34: *      $                   W( * ), WORK( * )
   35: *       ..
   36: *
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> ZHSEIN uses inverse iteration to find specified right and/or left
   44: *> eigenvectors of a complex upper Hessenberg matrix H.
   45: *>
   46: *> The right eigenvector x and the left eigenvector y of the matrix H
   47: *> corresponding to an eigenvalue w are defined by:
   48: *>
   49: *>              H * x = w * x,     y**h * H = w * y**h
   50: *>
   51: *> where y**h denotes the conjugate transpose of the vector y.
   52: *> \endverbatim
   53: *
   54: *  Arguments:
   55: *  ==========
   56: *
   57: *> \param[in] SIDE
   58: *> \verbatim
   59: *>          SIDE is CHARACTER*1
   60: *>          = 'R': compute right eigenvectors only;
   61: *>          = 'L': compute left eigenvectors only;
   62: *>          = 'B': compute both right and left eigenvectors.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] EIGSRC
   66: *> \verbatim
   67: *>          EIGSRC is CHARACTER*1
   68: *>          Specifies the source of eigenvalues supplied in W:
   69: *>          = 'Q': the eigenvalues were found using ZHSEQR; thus, if
   70: *>                 H has zero subdiagonal elements, and so is
   71: *>                 block-triangular, then the j-th eigenvalue can be
   72: *>                 assumed to be an eigenvalue of the block containing
   73: *>                 the j-th row/column.  This property allows ZHSEIN to
   74: *>                 perform inverse iteration on just one diagonal block.
   75: *>          = 'N': no assumptions are made on the correspondence
   76: *>                 between eigenvalues and diagonal blocks.  In this
   77: *>                 case, ZHSEIN must always perform inverse iteration
   78: *>                 using the whole matrix H.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] INITV
   82: *> \verbatim
   83: *>          INITV is CHARACTER*1
   84: *>          = 'N': no initial vectors are supplied;
   85: *>          = 'U': user-supplied initial vectors are stored in the arrays
   86: *>                 VL and/or VR.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] SELECT
   90: *> \verbatim
   91: *>          SELECT is LOGICAL array, dimension (N)
   92: *>          Specifies the eigenvectors to be computed. To select the
   93: *>          eigenvector corresponding to the eigenvalue W(j),
   94: *>          SELECT(j) must be set to .TRUE..
   95: *> \endverbatim
   96: *>
   97: *> \param[in] N
   98: *> \verbatim
   99: *>          N is INTEGER
  100: *>          The order of the matrix H.  N >= 0.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] H
  104: *> \verbatim
  105: *>          H is COMPLEX*16 array, dimension (LDH,N)
  106: *>          The upper Hessenberg matrix H.
  107: *>          If a NaN is detected in H, the routine will return with INFO=-6.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] LDH
  111: *> \verbatim
  112: *>          LDH is INTEGER
  113: *>          The leading dimension of the array H.  LDH >= max(1,N).
  114: *> \endverbatim
  115: *>
  116: *> \param[in,out] W
  117: *> \verbatim
  118: *>          W is COMPLEX*16 array, dimension (N)
  119: *>          On entry, the eigenvalues of H.
  120: *>          On exit, the real parts of W may have been altered since
  121: *>          close eigenvalues are perturbed slightly in searching for
  122: *>          independent eigenvectors.
  123: *> \endverbatim
  124: *>
  125: *> \param[in,out] VL
  126: *> \verbatim
  127: *>          VL is COMPLEX*16 array, dimension (LDVL,MM)
  128: *>          On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
  129: *>          contain starting vectors for the inverse iteration for the
  130: *>          left eigenvectors; the starting vector for each eigenvector
  131: *>          must be in the same column in which the eigenvector will be
  132: *>          stored.
  133: *>          On exit, if SIDE = 'L' or 'B', the left eigenvectors
  134: *>          specified by SELECT will be stored consecutively in the
  135: *>          columns of VL, in the same order as their eigenvalues.
  136: *>          If SIDE = 'R', VL is not referenced.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] LDVL
  140: *> \verbatim
  141: *>          LDVL is INTEGER
  142: *>          The leading dimension of the array VL.
  143: *>          LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
  144: *> \endverbatim
  145: *>
  146: *> \param[in,out] VR
  147: *> \verbatim
  148: *>          VR is COMPLEX*16 array, dimension (LDVR,MM)
  149: *>          On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
  150: *>          contain starting vectors for the inverse iteration for the
  151: *>          right eigenvectors; the starting vector for each eigenvector
  152: *>          must be in the same column in which the eigenvector will be
  153: *>          stored.
  154: *>          On exit, if SIDE = 'R' or 'B', the right eigenvectors
  155: *>          specified by SELECT will be stored consecutively in the
  156: *>          columns of VR, in the same order as their eigenvalues.
  157: *>          If SIDE = 'L', VR is not referenced.
  158: *> \endverbatim
  159: *>
  160: *> \param[in] LDVR
  161: *> \verbatim
  162: *>          LDVR is INTEGER
  163: *>          The leading dimension of the array VR.
  164: *>          LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
  165: *> \endverbatim
  166: *>
  167: *> \param[in] MM
  168: *> \verbatim
  169: *>          MM is INTEGER
  170: *>          The number of columns in the arrays VL and/or VR. MM >= M.
  171: *> \endverbatim
  172: *>
  173: *> \param[out] M
  174: *> \verbatim
  175: *>          M is INTEGER
  176: *>          The number of columns in the arrays VL and/or VR required to
  177: *>          store the eigenvectors (= the number of .TRUE. elements in
  178: *>          SELECT).
  179: *> \endverbatim
  180: *>
  181: *> \param[out] WORK
  182: *> \verbatim
  183: *>          WORK is COMPLEX*16 array, dimension (N*N)
  184: *> \endverbatim
  185: *>
  186: *> \param[out] RWORK
  187: *> \verbatim
  188: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  189: *> \endverbatim
  190: *>
  191: *> \param[out] IFAILL
  192: *> \verbatim
  193: *>          IFAILL is INTEGER array, dimension (MM)
  194: *>          If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
  195: *>          eigenvector in the i-th column of VL (corresponding to the
  196: *>          eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
  197: *>          eigenvector converged satisfactorily.
  198: *>          If SIDE = 'R', IFAILL is not referenced.
  199: *> \endverbatim
  200: *>
  201: *> \param[out] IFAILR
  202: *> \verbatim
  203: *>          IFAILR is INTEGER array, dimension (MM)
  204: *>          If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
  205: *>          eigenvector in the i-th column of VR (corresponding to the
  206: *>          eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
  207: *>          eigenvector converged satisfactorily.
  208: *>          If SIDE = 'L', IFAILR is not referenced.
  209: *> \endverbatim
  210: *>
  211: *> \param[out] INFO
  212: *> \verbatim
  213: *>          INFO is INTEGER
  214: *>          = 0:  successful exit
  215: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  216: *>          > 0:  if INFO = i, i is the number of eigenvectors which
  217: *>                failed to converge; see IFAILL and IFAILR for further
  218: *>                details.
  219: *> \endverbatim
  220: *
  221: *  Authors:
  222: *  ========
  223: *
  224: *> \author Univ. of Tennessee
  225: *> \author Univ. of California Berkeley
  226: *> \author Univ. of Colorado Denver
  227: *> \author NAG Ltd.
  228: *
  229: *> \ingroup complex16OTHERcomputational
  230: *
  231: *> \par Further Details:
  232: *  =====================
  233: *>
  234: *> \verbatim
  235: *>
  236: *>  Each eigenvector is normalized so that the element of largest
  237: *>  magnitude has magnitude 1; here the magnitude of a complex number
  238: *>  (x,y) is taken to be |x|+|y|.
  239: *> \endverbatim
  240: *>
  241: *  =====================================================================
  242:       SUBROUTINE ZHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL,
  243:      $                   LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL,
  244:      $                   IFAILR, INFO )
  245: *
  246: *  -- LAPACK computational routine --
  247: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  248: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  249: *
  250: *     .. Scalar Arguments ..
  251:       CHARACTER          EIGSRC, INITV, SIDE
  252:       INTEGER            INFO, LDH, LDVL, LDVR, M, MM, N
  253: *     ..
  254: *     .. Array Arguments ..
  255:       LOGICAL            SELECT( * )
  256:       INTEGER            IFAILL( * ), IFAILR( * )
  257:       DOUBLE PRECISION   RWORK( * )
  258:       COMPLEX*16         H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
  259:      $                   W( * ), WORK( * )
  260: *     ..
  261: *
  262: *  =====================================================================
  263: *
  264: *     .. Parameters ..
  265:       COMPLEX*16         ZERO
  266:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  267:       DOUBLE PRECISION   RZERO
  268:       PARAMETER          ( RZERO = 0.0D+0 )
  269: *     ..
  270: *     .. Local Scalars ..
  271:       LOGICAL            BOTHV, FROMQR, LEFTV, NOINIT, RIGHTV
  272:       INTEGER            I, IINFO, K, KL, KLN, KR, KS, LDWORK
  273:       DOUBLE PRECISION   EPS3, HNORM, SMLNUM, ULP, UNFL
  274:       COMPLEX*16         CDUM, WK
  275: *     ..
  276: *     .. External Functions ..
  277:       LOGICAL            LSAME, DISNAN
  278:       DOUBLE PRECISION   DLAMCH, ZLANHS
  279:       EXTERNAL           LSAME, DLAMCH, ZLANHS, DISNAN
  280: *     ..
  281: *     .. External Subroutines ..
  282:       EXTERNAL           XERBLA, ZLAEIN
  283: *     ..
  284: *     .. Intrinsic Functions ..
  285:       INTRINSIC          ABS, DBLE, DIMAG, MAX
  286: *     ..
  287: *     .. Statement Functions ..
  288:       DOUBLE PRECISION   CABS1
  289: *     ..
  290: *     .. Statement Function definitions ..
  291:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  292: *     ..
  293: *     .. Executable Statements ..
  294: *
  295: *     Decode and test the input parameters.
  296: *
  297:       BOTHV = LSAME( SIDE, 'B' )
  298:       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
  299:       LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
  300: *
  301:       FROMQR = LSAME( EIGSRC, 'Q' )
  302: *
  303:       NOINIT = LSAME( INITV, 'N' )
  304: *
  305: *     Set M to the number of columns required to store the selected
  306: *     eigenvectors.
  307: *
  308:       M = 0
  309:       DO 10 K = 1, N
  310:          IF( SELECT( K ) )
  311:      $      M = M + 1
  312:    10 CONTINUE
  313: *
  314:       INFO = 0
  315:       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
  316:          INFO = -1
  317:       ELSE IF( .NOT.FROMQR .AND. .NOT.LSAME( EIGSRC, 'N' ) ) THEN
  318:          INFO = -2
  319:       ELSE IF( .NOT.NOINIT .AND. .NOT.LSAME( INITV, 'U' ) ) THEN
  320:          INFO = -3
  321:       ELSE IF( N.LT.0 ) THEN
  322:          INFO = -5
  323:       ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
  324:          INFO = -7
  325:       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
  326:          INFO = -10
  327:       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
  328:          INFO = -12
  329:       ELSE IF( MM.LT.M ) THEN
  330:          INFO = -13
  331:       END IF
  332:       IF( INFO.NE.0 ) THEN
  333:          CALL XERBLA( 'ZHSEIN', -INFO )
  334:          RETURN
  335:       END IF
  336: *
  337: *     Quick return if possible.
  338: *
  339:       IF( N.EQ.0 )
  340:      $   RETURN
  341: *
  342: *     Set machine-dependent constants.
  343: *
  344:       UNFL = DLAMCH( 'Safe minimum' )
  345:       ULP = DLAMCH( 'Precision' )
  346:       SMLNUM = UNFL*( N / ULP )
  347: *
  348:       LDWORK = N
  349: *
  350:       KL = 1
  351:       KLN = 0
  352:       IF( FROMQR ) THEN
  353:          KR = 0
  354:       ELSE
  355:          KR = N
  356:       END IF
  357:       KS = 1
  358: *
  359:       DO 100 K = 1, N
  360:          IF( SELECT( K ) ) THEN
  361: *
  362: *           Compute eigenvector(s) corresponding to W(K).
  363: *
  364:             IF( FROMQR ) THEN
  365: *
  366: *              If affiliation of eigenvalues is known, check whether
  367: *              the matrix splits.
  368: *
  369: *              Determine KL and KR such that 1 <= KL <= K <= KR <= N
  370: *              and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or
  371: *              KR = N).
  372: *
  373: *              Then inverse iteration can be performed with the
  374: *              submatrix H(KL:N,KL:N) for a left eigenvector, and with
  375: *              the submatrix H(1:KR,1:KR) for a right eigenvector.
  376: *
  377:                DO 20 I = K, KL + 1, -1
  378:                   IF( H( I, I-1 ).EQ.ZERO )
  379:      $               GO TO 30
  380:    20          CONTINUE
  381:    30          CONTINUE
  382:                KL = I
  383:                IF( K.GT.KR ) THEN
  384:                   DO 40 I = K, N - 1
  385:                      IF( H( I+1, I ).EQ.ZERO )
  386:      $                  GO TO 50
  387:    40             CONTINUE
  388:    50             CONTINUE
  389:                   KR = I
  390:                END IF
  391:             END IF
  392: *
  393:             IF( KL.NE.KLN ) THEN
  394:                KLN = KL
  395: *
  396: *              Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it
  397: *              has not ben computed before.
  398: *
  399:                HNORM = ZLANHS( 'I', KR-KL+1, H( KL, KL ), LDH, RWORK )
  400:                IF( DISNAN( HNORM ) ) THEN
  401:                   INFO = -6
  402:                   RETURN
  403:                ELSE IF( HNORM.GT.RZERO ) THEN
  404:                   EPS3 = HNORM*ULP
  405:                ELSE
  406:                   EPS3 = SMLNUM
  407:                END IF
  408:             END IF
  409: *
  410: *           Perturb eigenvalue if it is close to any previous
  411: *           selected eigenvalues affiliated to the submatrix
  412: *           H(KL:KR,KL:KR). Close roots are modified by EPS3.
  413: *
  414:             WK = W( K )
  415:    60       CONTINUE
  416:             DO 70 I = K - 1, KL, -1
  417:                IF( SELECT( I ) .AND. CABS1( W( I )-WK ).LT.EPS3 ) THEN
  418:                   WK = WK + EPS3
  419:                   GO TO 60
  420:                END IF
  421:    70       CONTINUE
  422:             W( K ) = WK
  423: *
  424:             IF( LEFTV ) THEN
  425: *
  426: *              Compute left eigenvector.
  427: *
  428:                CALL ZLAEIN( .FALSE., NOINIT, N-KL+1, H( KL, KL ), LDH,
  429:      $                      WK, VL( KL, KS ), WORK, LDWORK, RWORK, EPS3,
  430:      $                      SMLNUM, IINFO )
  431:                IF( IINFO.GT.0 ) THEN
  432:                   INFO = INFO + 1
  433:                   IFAILL( KS ) = K
  434:                ELSE
  435:                   IFAILL( KS ) = 0
  436:                END IF
  437:                DO 80 I = 1, KL - 1
  438:                   VL( I, KS ) = ZERO
  439:    80          CONTINUE
  440:             END IF
  441:             IF( RIGHTV ) THEN
  442: *
  443: *              Compute right eigenvector.
  444: *
  445:                CALL ZLAEIN( .TRUE., NOINIT, KR, H, LDH, WK, VR( 1, KS ),
  446:      $                      WORK, LDWORK, RWORK, EPS3, SMLNUM, IINFO )
  447:                IF( IINFO.GT.0 ) THEN
  448:                   INFO = INFO + 1
  449:                   IFAILR( KS ) = K
  450:                ELSE
  451:                   IFAILR( KS ) = 0
  452:                END IF
  453:                DO 90 I = KR + 1, N
  454:                   VR( I, KS ) = ZERO
  455:    90          CONTINUE
  456:             END IF
  457:             KS = KS + 1
  458:          END IF
  459:   100 CONTINUE
  460: *
  461:       RETURN
  462: *
  463: *     End of ZHSEIN
  464: *
  465:       END

CVSweb interface <joel.bertrand@systella.fr>