Annotation of rpl/lapack/lapack/zhsein.f, revision 1.9

1.8       bertrand    1: *> \brief \b ZHSEIN
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZHSEIN + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhsein.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhsein.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhsein.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL,
                     22: *                          LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL,
                     23: *                          IFAILR, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          EIGSRC, INITV, SIDE
                     27: *       INTEGER            INFO, LDH, LDVL, LDVR, M, MM, N
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       LOGICAL            SELECT( * )
                     31: *       INTEGER            IFAILL( * ), IFAILR( * )
                     32: *       DOUBLE PRECISION   RWORK( * )
                     33: *       COMPLEX*16         H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
                     34: *      $                   W( * ), WORK( * )
                     35: *       ..
                     36: *  
                     37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> ZHSEIN uses inverse iteration to find specified right and/or left
                     44: *> eigenvectors of a complex upper Hessenberg matrix H.
                     45: *>
                     46: *> The right eigenvector x and the left eigenvector y of the matrix H
                     47: *> corresponding to an eigenvalue w are defined by:
                     48: *>
                     49: *>              H * x = w * x,     y**h * H = w * y**h
                     50: *>
                     51: *> where y**h denotes the conjugate transpose of the vector y.
                     52: *> \endverbatim
                     53: *
                     54: *  Arguments:
                     55: *  ==========
                     56: *
                     57: *> \param[in] SIDE
                     58: *> \verbatim
                     59: *>          SIDE is CHARACTER*1
                     60: *>          = 'R': compute right eigenvectors only;
                     61: *>          = 'L': compute left eigenvectors only;
                     62: *>          = 'B': compute both right and left eigenvectors.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] EIGSRC
                     66: *> \verbatim
                     67: *>          EIGSRC is CHARACTER*1
                     68: *>          Specifies the source of eigenvalues supplied in W:
                     69: *>          = 'Q': the eigenvalues were found using ZHSEQR; thus, if
                     70: *>                 H has zero subdiagonal elements, and so is
                     71: *>                 block-triangular, then the j-th eigenvalue can be
                     72: *>                 assumed to be an eigenvalue of the block containing
                     73: *>                 the j-th row/column.  This property allows ZHSEIN to
                     74: *>                 perform inverse iteration on just one diagonal block.
                     75: *>          = 'N': no assumptions are made on the correspondence
                     76: *>                 between eigenvalues and diagonal blocks.  In this
                     77: *>                 case, ZHSEIN must always perform inverse iteration
                     78: *>                 using the whole matrix H.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] INITV
                     82: *> \verbatim
                     83: *>          INITV is CHARACTER*1
                     84: *>          = 'N': no initial vectors are supplied;
                     85: *>          = 'U': user-supplied initial vectors are stored in the arrays
                     86: *>                 VL and/or VR.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] SELECT
                     90: *> \verbatim
                     91: *>          SELECT is LOGICAL array, dimension (N)
                     92: *>          Specifies the eigenvectors to be computed. To select the
                     93: *>          eigenvector corresponding to the eigenvalue W(j),
                     94: *>          SELECT(j) must be set to .TRUE..
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in] N
                     98: *> \verbatim
                     99: *>          N is INTEGER
                    100: *>          The order of the matrix H.  N >= 0.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] H
                    104: *> \verbatim
                    105: *>          H is COMPLEX*16 array, dimension (LDH,N)
                    106: *>          The upper Hessenberg matrix H.
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in] LDH
                    110: *> \verbatim
                    111: *>          LDH is INTEGER
                    112: *>          The leading dimension of the array H.  LDH >= max(1,N).
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in,out] W
                    116: *> \verbatim
                    117: *>          W is COMPLEX*16 array, dimension (N)
                    118: *>          On entry, the eigenvalues of H.
                    119: *>          On exit, the real parts of W may have been altered since
                    120: *>          close eigenvalues are perturbed slightly in searching for
                    121: *>          independent eigenvectors.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in,out] VL
                    125: *> \verbatim
                    126: *>          VL is COMPLEX*16 array, dimension (LDVL,MM)
                    127: *>          On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
                    128: *>          contain starting vectors for the inverse iteration for the
                    129: *>          left eigenvectors; the starting vector for each eigenvector
                    130: *>          must be in the same column in which the eigenvector will be
                    131: *>          stored.
                    132: *>          On exit, if SIDE = 'L' or 'B', the left eigenvectors
                    133: *>          specified by SELECT will be stored consecutively in the
                    134: *>          columns of VL, in the same order as their eigenvalues.
                    135: *>          If SIDE = 'R', VL is not referenced.
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[in] LDVL
                    139: *> \verbatim
                    140: *>          LDVL is INTEGER
                    141: *>          The leading dimension of the array VL.
                    142: *>          LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in,out] VR
                    146: *> \verbatim
                    147: *>          VR is COMPLEX*16 array, dimension (LDVR,MM)
                    148: *>          On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
                    149: *>          contain starting vectors for the inverse iteration for the
                    150: *>          right eigenvectors; the starting vector for each eigenvector
                    151: *>          must be in the same column in which the eigenvector will be
                    152: *>          stored.
                    153: *>          On exit, if SIDE = 'R' or 'B', the right eigenvectors
                    154: *>          specified by SELECT will be stored consecutively in the
                    155: *>          columns of VR, in the same order as their eigenvalues.
                    156: *>          If SIDE = 'L', VR is not referenced.
                    157: *> \endverbatim
                    158: *>
                    159: *> \param[in] LDVR
                    160: *> \verbatim
                    161: *>          LDVR is INTEGER
                    162: *>          The leading dimension of the array VR.
                    163: *>          LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
                    164: *> \endverbatim
                    165: *>
                    166: *> \param[in] MM
                    167: *> \verbatim
                    168: *>          MM is INTEGER
                    169: *>          The number of columns in the arrays VL and/or VR. MM >= M.
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[out] M
                    173: *> \verbatim
                    174: *>          M is INTEGER
                    175: *>          The number of columns in the arrays VL and/or VR required to
                    176: *>          store the eigenvectors (= the number of .TRUE. elements in
                    177: *>          SELECT).
                    178: *> \endverbatim
                    179: *>
                    180: *> \param[out] WORK
                    181: *> \verbatim
                    182: *>          WORK is COMPLEX*16 array, dimension (N*N)
                    183: *> \endverbatim
                    184: *>
                    185: *> \param[out] RWORK
                    186: *> \verbatim
                    187: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    188: *> \endverbatim
                    189: *>
                    190: *> \param[out] IFAILL
                    191: *> \verbatim
                    192: *>          IFAILL is INTEGER array, dimension (MM)
                    193: *>          If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
                    194: *>          eigenvector in the i-th column of VL (corresponding to the
                    195: *>          eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
                    196: *>          eigenvector converged satisfactorily.
                    197: *>          If SIDE = 'R', IFAILL is not referenced.
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[out] IFAILR
                    201: *> \verbatim
                    202: *>          IFAILR is INTEGER array, dimension (MM)
                    203: *>          If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
                    204: *>          eigenvector in the i-th column of VR (corresponding to the
                    205: *>          eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
                    206: *>          eigenvector converged satisfactorily.
                    207: *>          If SIDE = 'L', IFAILR is not referenced.
                    208: *> \endverbatim
                    209: *>
                    210: *> \param[out] INFO
                    211: *> \verbatim
                    212: *>          INFO is INTEGER
                    213: *>          = 0:  successful exit
                    214: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    215: *>          > 0:  if INFO = i, i is the number of eigenvectors which
                    216: *>                failed to converge; see IFAILL and IFAILR for further
                    217: *>                details.
                    218: *> \endverbatim
                    219: *
                    220: *  Authors:
                    221: *  ========
                    222: *
                    223: *> \author Univ. of Tennessee 
                    224: *> \author Univ. of California Berkeley 
                    225: *> \author Univ. of Colorado Denver 
                    226: *> \author NAG Ltd. 
                    227: *
                    228: *> \date November 2011
                    229: *
                    230: *> \ingroup complex16OTHERcomputational
                    231: *
                    232: *> \par Further Details:
                    233: *  =====================
                    234: *>
                    235: *> \verbatim
                    236: *>
                    237: *>  Each eigenvector is normalized so that the element of largest
                    238: *>  magnitude has magnitude 1; here the magnitude of a complex number
                    239: *>  (x,y) is taken to be |x|+|y|.
                    240: *> \endverbatim
                    241: *>
                    242: *  =====================================================================
1.1       bertrand  243:       SUBROUTINE ZHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL,
                    244:      $                   LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL,
                    245:      $                   IFAILR, INFO )
                    246: *
1.8       bertrand  247: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  248: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    249: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8       bertrand  250: *     November 2011
1.1       bertrand  251: *
                    252: *     .. Scalar Arguments ..
                    253:       CHARACTER          EIGSRC, INITV, SIDE
                    254:       INTEGER            INFO, LDH, LDVL, LDVR, M, MM, N
                    255: *     ..
                    256: *     .. Array Arguments ..
                    257:       LOGICAL            SELECT( * )
                    258:       INTEGER            IFAILL( * ), IFAILR( * )
                    259:       DOUBLE PRECISION   RWORK( * )
                    260:       COMPLEX*16         H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
                    261:      $                   W( * ), WORK( * )
                    262: *     ..
                    263: *
                    264: *  =====================================================================
                    265: *
                    266: *     .. Parameters ..
                    267:       COMPLEX*16         ZERO
                    268:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
                    269:       DOUBLE PRECISION   RZERO
                    270:       PARAMETER          ( RZERO = 0.0D+0 )
                    271: *     ..
                    272: *     .. Local Scalars ..
                    273:       LOGICAL            BOTHV, FROMQR, LEFTV, NOINIT, RIGHTV
                    274:       INTEGER            I, IINFO, K, KL, KLN, KR, KS, LDWORK
                    275:       DOUBLE PRECISION   EPS3, HNORM, SMLNUM, ULP, UNFL
                    276:       COMPLEX*16         CDUM, WK
                    277: *     ..
                    278: *     .. External Functions ..
                    279:       LOGICAL            LSAME
                    280:       DOUBLE PRECISION   DLAMCH, ZLANHS
                    281:       EXTERNAL           LSAME, DLAMCH, ZLANHS
                    282: *     ..
                    283: *     .. External Subroutines ..
                    284:       EXTERNAL           XERBLA, ZLAEIN
                    285: *     ..
                    286: *     .. Intrinsic Functions ..
                    287:       INTRINSIC          ABS, DBLE, DIMAG, MAX
                    288: *     ..
                    289: *     .. Statement Functions ..
                    290:       DOUBLE PRECISION   CABS1
                    291: *     ..
                    292: *     .. Statement Function definitions ..
                    293:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
                    294: *     ..
                    295: *     .. Executable Statements ..
                    296: *
                    297: *     Decode and test the input parameters.
                    298: *
                    299:       BOTHV = LSAME( SIDE, 'B' )
                    300:       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
                    301:       LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
                    302: *
                    303:       FROMQR = LSAME( EIGSRC, 'Q' )
                    304: *
                    305:       NOINIT = LSAME( INITV, 'N' )
                    306: *
                    307: *     Set M to the number of columns required to store the selected
                    308: *     eigenvectors.
                    309: *
                    310:       M = 0
                    311:       DO 10 K = 1, N
                    312:          IF( SELECT( K ) )
                    313:      $      M = M + 1
                    314:    10 CONTINUE
                    315: *
                    316:       INFO = 0
                    317:       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
                    318:          INFO = -1
                    319:       ELSE IF( .NOT.FROMQR .AND. .NOT.LSAME( EIGSRC, 'N' ) ) THEN
                    320:          INFO = -2
                    321:       ELSE IF( .NOT.NOINIT .AND. .NOT.LSAME( INITV, 'U' ) ) THEN
                    322:          INFO = -3
                    323:       ELSE IF( N.LT.0 ) THEN
                    324:          INFO = -5
                    325:       ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
                    326:          INFO = -7
                    327:       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
                    328:          INFO = -10
                    329:       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
                    330:          INFO = -12
                    331:       ELSE IF( MM.LT.M ) THEN
                    332:          INFO = -13
                    333:       END IF
                    334:       IF( INFO.NE.0 ) THEN
                    335:          CALL XERBLA( 'ZHSEIN', -INFO )
                    336:          RETURN
                    337:       END IF
                    338: *
                    339: *     Quick return if possible.
                    340: *
                    341:       IF( N.EQ.0 )
                    342:      $   RETURN
                    343: *
                    344: *     Set machine-dependent constants.
                    345: *
                    346:       UNFL = DLAMCH( 'Safe minimum' )
                    347:       ULP = DLAMCH( 'Precision' )
                    348:       SMLNUM = UNFL*( N / ULP )
                    349: *
                    350:       LDWORK = N
                    351: *
                    352:       KL = 1
                    353:       KLN = 0
                    354:       IF( FROMQR ) THEN
                    355:          KR = 0
                    356:       ELSE
                    357:          KR = N
                    358:       END IF
                    359:       KS = 1
                    360: *
                    361:       DO 100 K = 1, N
                    362:          IF( SELECT( K ) ) THEN
                    363: *
                    364: *           Compute eigenvector(s) corresponding to W(K).
                    365: *
                    366:             IF( FROMQR ) THEN
                    367: *
                    368: *              If affiliation of eigenvalues is known, check whether
                    369: *              the matrix splits.
                    370: *
                    371: *              Determine KL and KR such that 1 <= KL <= K <= KR <= N
                    372: *              and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or
                    373: *              KR = N).
                    374: *
                    375: *              Then inverse iteration can be performed with the
                    376: *              submatrix H(KL:N,KL:N) for a left eigenvector, and with
                    377: *              the submatrix H(1:KR,1:KR) for a right eigenvector.
                    378: *
                    379:                DO 20 I = K, KL + 1, -1
                    380:                   IF( H( I, I-1 ).EQ.ZERO )
                    381:      $               GO TO 30
                    382:    20          CONTINUE
                    383:    30          CONTINUE
                    384:                KL = I
                    385:                IF( K.GT.KR ) THEN
                    386:                   DO 40 I = K, N - 1
                    387:                      IF( H( I+1, I ).EQ.ZERO )
                    388:      $                  GO TO 50
                    389:    40             CONTINUE
                    390:    50             CONTINUE
                    391:                   KR = I
                    392:                END IF
                    393:             END IF
                    394: *
                    395:             IF( KL.NE.KLN ) THEN
                    396:                KLN = KL
                    397: *
                    398: *              Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it
                    399: *              has not ben computed before.
                    400: *
                    401:                HNORM = ZLANHS( 'I', KR-KL+1, H( KL, KL ), LDH, RWORK )
                    402:                IF( HNORM.GT.RZERO ) THEN
                    403:                   EPS3 = HNORM*ULP
                    404:                ELSE
                    405:                   EPS3 = SMLNUM
                    406:                END IF
                    407:             END IF
                    408: *
                    409: *           Perturb eigenvalue if it is close to any previous
                    410: *           selected eigenvalues affiliated to the submatrix
                    411: *           H(KL:KR,KL:KR). Close roots are modified by EPS3.
                    412: *
                    413:             WK = W( K )
                    414:    60       CONTINUE
                    415:             DO 70 I = K - 1, KL, -1
                    416:                IF( SELECT( I ) .AND. CABS1( W( I )-WK ).LT.EPS3 ) THEN
                    417:                   WK = WK + EPS3
                    418:                   GO TO 60
                    419:                END IF
                    420:    70       CONTINUE
                    421:             W( K ) = WK
                    422: *
                    423:             IF( LEFTV ) THEN
                    424: *
                    425: *              Compute left eigenvector.
                    426: *
                    427:                CALL ZLAEIN( .FALSE., NOINIT, N-KL+1, H( KL, KL ), LDH,
                    428:      $                      WK, VL( KL, KS ), WORK, LDWORK, RWORK, EPS3,
                    429:      $                      SMLNUM, IINFO )
                    430:                IF( IINFO.GT.0 ) THEN
                    431:                   INFO = INFO + 1
                    432:                   IFAILL( KS ) = K
                    433:                ELSE
                    434:                   IFAILL( KS ) = 0
                    435:                END IF
                    436:                DO 80 I = 1, KL - 1
                    437:                   VL( I, KS ) = ZERO
                    438:    80          CONTINUE
                    439:             END IF
                    440:             IF( RIGHTV ) THEN
                    441: *
                    442: *              Compute right eigenvector.
                    443: *
                    444:                CALL ZLAEIN( .TRUE., NOINIT, KR, H, LDH, WK, VR( 1, KS ),
                    445:      $                      WORK, LDWORK, RWORK, EPS3, SMLNUM, IINFO )
                    446:                IF( IINFO.GT.0 ) THEN
                    447:                   INFO = INFO + 1
                    448:                   IFAILR( KS ) = K
                    449:                ELSE
                    450:                   IFAILR( KS ) = 0
                    451:                END IF
                    452:                DO 90 I = KR + 1, N
                    453:                   VR( I, KS ) = ZERO
                    454:    90          CONTINUE
                    455:             END IF
                    456:             KS = KS + 1
                    457:          END IF
                    458:   100 CONTINUE
                    459: *
                    460:       RETURN
                    461: *
                    462: *     End of ZHSEIN
                    463: *
                    464:       END

CVSweb interface <joel.bertrand@systella.fr>