Annotation of rpl/lapack/lapack/zhsein.f, revision 1.1.1.1

1.1       bertrand    1:       SUBROUTINE ZHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL,
                      2:      $                   LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL,
                      3:      $                   IFAILR, INFO )
                      4: *
                      5: *  -- LAPACK routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          EIGSRC, INITV, SIDE
                     12:       INTEGER            INFO, LDH, LDVL, LDVR, M, MM, N
                     13: *     ..
                     14: *     .. Array Arguments ..
                     15:       LOGICAL            SELECT( * )
                     16:       INTEGER            IFAILL( * ), IFAILR( * )
                     17:       DOUBLE PRECISION   RWORK( * )
                     18:       COMPLEX*16         H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
                     19:      $                   W( * ), WORK( * )
                     20: *     ..
                     21: *
                     22: *  Purpose
                     23: *  =======
                     24: *
                     25: *  ZHSEIN uses inverse iteration to find specified right and/or left
                     26: *  eigenvectors of a complex upper Hessenberg matrix H.
                     27: *
                     28: *  The right eigenvector x and the left eigenvector y of the matrix H
                     29: *  corresponding to an eigenvalue w are defined by:
                     30: *
                     31: *               H * x = w * x,     y**h * H = w * y**h
                     32: *
                     33: *  where y**h denotes the conjugate transpose of the vector y.
                     34: *
                     35: *  Arguments
                     36: *  =========
                     37: *
                     38: *  SIDE    (input) CHARACTER*1
                     39: *          = 'R': compute right eigenvectors only;
                     40: *          = 'L': compute left eigenvectors only;
                     41: *          = 'B': compute both right and left eigenvectors.
                     42: *
                     43: *  EIGSRC  (input) CHARACTER*1
                     44: *          Specifies the source of eigenvalues supplied in W:
                     45: *          = 'Q': the eigenvalues were found using ZHSEQR; thus, if
                     46: *                 H has zero subdiagonal elements, and so is
                     47: *                 block-triangular, then the j-th eigenvalue can be
                     48: *                 assumed to be an eigenvalue of the block containing
                     49: *                 the j-th row/column.  This property allows ZHSEIN to
                     50: *                 perform inverse iteration on just one diagonal block.
                     51: *          = 'N': no assumptions are made on the correspondence
                     52: *                 between eigenvalues and diagonal blocks.  In this
                     53: *                 case, ZHSEIN must always perform inverse iteration
                     54: *                 using the whole matrix H.
                     55: *
                     56: *  INITV   (input) CHARACTER*1
                     57: *          = 'N': no initial vectors are supplied;
                     58: *          = 'U': user-supplied initial vectors are stored in the arrays
                     59: *                 VL and/or VR.
                     60: *
                     61: *  SELECT  (input) LOGICAL array, dimension (N)
                     62: *          Specifies the eigenvectors to be computed. To select the
                     63: *          eigenvector corresponding to the eigenvalue W(j),
                     64: *          SELECT(j) must be set to .TRUE..
                     65: *
                     66: *  N       (input) INTEGER
                     67: *          The order of the matrix H.  N >= 0.
                     68: *
                     69: *  H       (input) COMPLEX*16 array, dimension (LDH,N)
                     70: *          The upper Hessenberg matrix H.
                     71: *
                     72: *  LDH     (input) INTEGER
                     73: *          The leading dimension of the array H.  LDH >= max(1,N).
                     74: *
                     75: *  W       (input/output) COMPLEX*16 array, dimension (N)
                     76: *          On entry, the eigenvalues of H.
                     77: *          On exit, the real parts of W may have been altered since
                     78: *          close eigenvalues are perturbed slightly in searching for
                     79: *          independent eigenvectors.
                     80: *
                     81: *  VL      (input/output) COMPLEX*16 array, dimension (LDVL,MM)
                     82: *          On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
                     83: *          contain starting vectors for the inverse iteration for the
                     84: *          left eigenvectors; the starting vector for each eigenvector
                     85: *          must be in the same column in which the eigenvector will be
                     86: *          stored.
                     87: *          On exit, if SIDE = 'L' or 'B', the left eigenvectors
                     88: *          specified by SELECT will be stored consecutively in the
                     89: *          columns of VL, in the same order as their eigenvalues.
                     90: *          If SIDE = 'R', VL is not referenced.
                     91: *
                     92: *  LDVL    (input) INTEGER
                     93: *          The leading dimension of the array VL.
                     94: *          LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
                     95: *
                     96: *  VR      (input/output) COMPLEX*16 array, dimension (LDVR,MM)
                     97: *          On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
                     98: *          contain starting vectors for the inverse iteration for the
                     99: *          right eigenvectors; the starting vector for each eigenvector
                    100: *          must be in the same column in which the eigenvector will be
                    101: *          stored.
                    102: *          On exit, if SIDE = 'R' or 'B', the right eigenvectors
                    103: *          specified by SELECT will be stored consecutively in the
                    104: *          columns of VR, in the same order as their eigenvalues.
                    105: *          If SIDE = 'L', VR is not referenced.
                    106: *
                    107: *  LDVR    (input) INTEGER
                    108: *          The leading dimension of the array VR.
                    109: *          LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
                    110: *
                    111: *  MM      (input) INTEGER
                    112: *          The number of columns in the arrays VL and/or VR. MM >= M.
                    113: *
                    114: *  M       (output) INTEGER
                    115: *          The number of columns in the arrays VL and/or VR required to
                    116: *          store the eigenvectors (= the number of .TRUE. elements in
                    117: *          SELECT).
                    118: *
                    119: *  WORK    (workspace) COMPLEX*16 array, dimension (N*N)
                    120: *
                    121: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
                    122: *
                    123: *  IFAILL  (output) INTEGER array, dimension (MM)
                    124: *          If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
                    125: *          eigenvector in the i-th column of VL (corresponding to the
                    126: *          eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
                    127: *          eigenvector converged satisfactorily.
                    128: *          If SIDE = 'R', IFAILL is not referenced.
                    129: *
                    130: *  IFAILR  (output) INTEGER array, dimension (MM)
                    131: *          If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
                    132: *          eigenvector in the i-th column of VR (corresponding to the
                    133: *          eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
                    134: *          eigenvector converged satisfactorily.
                    135: *          If SIDE = 'L', IFAILR is not referenced.
                    136: *
                    137: *  INFO    (output) INTEGER
                    138: *          = 0:  successful exit
                    139: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    140: *          > 0:  if INFO = i, i is the number of eigenvectors which
                    141: *                failed to converge; see IFAILL and IFAILR for further
                    142: *                details.
                    143: *
                    144: *  Further Details
                    145: *  ===============
                    146: *
                    147: *  Each eigenvector is normalized so that the element of largest
                    148: *  magnitude has magnitude 1; here the magnitude of a complex number
                    149: *  (x,y) is taken to be |x|+|y|.
                    150: *
                    151: *  =====================================================================
                    152: *
                    153: *     .. Parameters ..
                    154:       COMPLEX*16         ZERO
                    155:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
                    156:       DOUBLE PRECISION   RZERO
                    157:       PARAMETER          ( RZERO = 0.0D+0 )
                    158: *     ..
                    159: *     .. Local Scalars ..
                    160:       LOGICAL            BOTHV, FROMQR, LEFTV, NOINIT, RIGHTV
                    161:       INTEGER            I, IINFO, K, KL, KLN, KR, KS, LDWORK
                    162:       DOUBLE PRECISION   EPS3, HNORM, SMLNUM, ULP, UNFL
                    163:       COMPLEX*16         CDUM, WK
                    164: *     ..
                    165: *     .. External Functions ..
                    166:       LOGICAL            LSAME
                    167:       DOUBLE PRECISION   DLAMCH, ZLANHS
                    168:       EXTERNAL           LSAME, DLAMCH, ZLANHS
                    169: *     ..
                    170: *     .. External Subroutines ..
                    171:       EXTERNAL           XERBLA, ZLAEIN
                    172: *     ..
                    173: *     .. Intrinsic Functions ..
                    174:       INTRINSIC          ABS, DBLE, DIMAG, MAX
                    175: *     ..
                    176: *     .. Statement Functions ..
                    177:       DOUBLE PRECISION   CABS1
                    178: *     ..
                    179: *     .. Statement Function definitions ..
                    180:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
                    181: *     ..
                    182: *     .. Executable Statements ..
                    183: *
                    184: *     Decode and test the input parameters.
                    185: *
                    186:       BOTHV = LSAME( SIDE, 'B' )
                    187:       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
                    188:       LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
                    189: *
                    190:       FROMQR = LSAME( EIGSRC, 'Q' )
                    191: *
                    192:       NOINIT = LSAME( INITV, 'N' )
                    193: *
                    194: *     Set M to the number of columns required to store the selected
                    195: *     eigenvectors.
                    196: *
                    197:       M = 0
                    198:       DO 10 K = 1, N
                    199:          IF( SELECT( K ) )
                    200:      $      M = M + 1
                    201:    10 CONTINUE
                    202: *
                    203:       INFO = 0
                    204:       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
                    205:          INFO = -1
                    206:       ELSE IF( .NOT.FROMQR .AND. .NOT.LSAME( EIGSRC, 'N' ) ) THEN
                    207:          INFO = -2
                    208:       ELSE IF( .NOT.NOINIT .AND. .NOT.LSAME( INITV, 'U' ) ) THEN
                    209:          INFO = -3
                    210:       ELSE IF( N.LT.0 ) THEN
                    211:          INFO = -5
                    212:       ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
                    213:          INFO = -7
                    214:       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
                    215:          INFO = -10
                    216:       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
                    217:          INFO = -12
                    218:       ELSE IF( MM.LT.M ) THEN
                    219:          INFO = -13
                    220:       END IF
                    221:       IF( INFO.NE.0 ) THEN
                    222:          CALL XERBLA( 'ZHSEIN', -INFO )
                    223:          RETURN
                    224:       END IF
                    225: *
                    226: *     Quick return if possible.
                    227: *
                    228:       IF( N.EQ.0 )
                    229:      $   RETURN
                    230: *
                    231: *     Set machine-dependent constants.
                    232: *
                    233:       UNFL = DLAMCH( 'Safe minimum' )
                    234:       ULP = DLAMCH( 'Precision' )
                    235:       SMLNUM = UNFL*( N / ULP )
                    236: *
                    237:       LDWORK = N
                    238: *
                    239:       KL = 1
                    240:       KLN = 0
                    241:       IF( FROMQR ) THEN
                    242:          KR = 0
                    243:       ELSE
                    244:          KR = N
                    245:       END IF
                    246:       KS = 1
                    247: *
                    248:       DO 100 K = 1, N
                    249:          IF( SELECT( K ) ) THEN
                    250: *
                    251: *           Compute eigenvector(s) corresponding to W(K).
                    252: *
                    253:             IF( FROMQR ) THEN
                    254: *
                    255: *              If affiliation of eigenvalues is known, check whether
                    256: *              the matrix splits.
                    257: *
                    258: *              Determine KL and KR such that 1 <= KL <= K <= KR <= N
                    259: *              and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or
                    260: *              KR = N).
                    261: *
                    262: *              Then inverse iteration can be performed with the
                    263: *              submatrix H(KL:N,KL:N) for a left eigenvector, and with
                    264: *              the submatrix H(1:KR,1:KR) for a right eigenvector.
                    265: *
                    266:                DO 20 I = K, KL + 1, -1
                    267:                   IF( H( I, I-1 ).EQ.ZERO )
                    268:      $               GO TO 30
                    269:    20          CONTINUE
                    270:    30          CONTINUE
                    271:                KL = I
                    272:                IF( K.GT.KR ) THEN
                    273:                   DO 40 I = K, N - 1
                    274:                      IF( H( I+1, I ).EQ.ZERO )
                    275:      $                  GO TO 50
                    276:    40             CONTINUE
                    277:    50             CONTINUE
                    278:                   KR = I
                    279:                END IF
                    280:             END IF
                    281: *
                    282:             IF( KL.NE.KLN ) THEN
                    283:                KLN = KL
                    284: *
                    285: *              Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it
                    286: *              has not ben computed before.
                    287: *
                    288:                HNORM = ZLANHS( 'I', KR-KL+1, H( KL, KL ), LDH, RWORK )
                    289:                IF( HNORM.GT.RZERO ) THEN
                    290:                   EPS3 = HNORM*ULP
                    291:                ELSE
                    292:                   EPS3 = SMLNUM
                    293:                END IF
                    294:             END IF
                    295: *
                    296: *           Perturb eigenvalue if it is close to any previous
                    297: *           selected eigenvalues affiliated to the submatrix
                    298: *           H(KL:KR,KL:KR). Close roots are modified by EPS3.
                    299: *
                    300:             WK = W( K )
                    301:    60       CONTINUE
                    302:             DO 70 I = K - 1, KL, -1
                    303:                IF( SELECT( I ) .AND. CABS1( W( I )-WK ).LT.EPS3 ) THEN
                    304:                   WK = WK + EPS3
                    305:                   GO TO 60
                    306:                END IF
                    307:    70       CONTINUE
                    308:             W( K ) = WK
                    309: *
                    310:             IF( LEFTV ) THEN
                    311: *
                    312: *              Compute left eigenvector.
                    313: *
                    314:                CALL ZLAEIN( .FALSE., NOINIT, N-KL+1, H( KL, KL ), LDH,
                    315:      $                      WK, VL( KL, KS ), WORK, LDWORK, RWORK, EPS3,
                    316:      $                      SMLNUM, IINFO )
                    317:                IF( IINFO.GT.0 ) THEN
                    318:                   INFO = INFO + 1
                    319:                   IFAILL( KS ) = K
                    320:                ELSE
                    321:                   IFAILL( KS ) = 0
                    322:                END IF
                    323:                DO 80 I = 1, KL - 1
                    324:                   VL( I, KS ) = ZERO
                    325:    80          CONTINUE
                    326:             END IF
                    327:             IF( RIGHTV ) THEN
                    328: *
                    329: *              Compute right eigenvector.
                    330: *
                    331:                CALL ZLAEIN( .TRUE., NOINIT, KR, H, LDH, WK, VR( 1, KS ),
                    332:      $                      WORK, LDWORK, RWORK, EPS3, SMLNUM, IINFO )
                    333:                IF( IINFO.GT.0 ) THEN
                    334:                   INFO = INFO + 1
                    335:                   IFAILR( KS ) = K
                    336:                ELSE
                    337:                   IFAILR( KS ) = 0
                    338:                END IF
                    339:                DO 90 I = KR + 1, N
                    340:                   VR( I, KS ) = ZERO
                    341:    90          CONTINUE
                    342:             END IF
                    343:             KS = KS + 1
                    344:          END IF
                    345:   100 CONTINUE
                    346: *
                    347:       RETURN
                    348: *
                    349: *     End of ZHSEIN
                    350: *
                    351:       END

CVSweb interface <joel.bertrand@systella.fr>