Annotation of rpl/lapack/lapack/zhsein.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL,
        !             2:      $                   LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL,
        !             3:      $                   IFAILR, INFO )
        !             4: *
        !             5: *  -- LAPACK routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          EIGSRC, INITV, SIDE
        !            12:       INTEGER            INFO, LDH, LDVL, LDVR, M, MM, N
        !            13: *     ..
        !            14: *     .. Array Arguments ..
        !            15:       LOGICAL            SELECT( * )
        !            16:       INTEGER            IFAILL( * ), IFAILR( * )
        !            17:       DOUBLE PRECISION   RWORK( * )
        !            18:       COMPLEX*16         H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
        !            19:      $                   W( * ), WORK( * )
        !            20: *     ..
        !            21: *
        !            22: *  Purpose
        !            23: *  =======
        !            24: *
        !            25: *  ZHSEIN uses inverse iteration to find specified right and/or left
        !            26: *  eigenvectors of a complex upper Hessenberg matrix H.
        !            27: *
        !            28: *  The right eigenvector x and the left eigenvector y of the matrix H
        !            29: *  corresponding to an eigenvalue w are defined by:
        !            30: *
        !            31: *               H * x = w * x,     y**h * H = w * y**h
        !            32: *
        !            33: *  where y**h denotes the conjugate transpose of the vector y.
        !            34: *
        !            35: *  Arguments
        !            36: *  =========
        !            37: *
        !            38: *  SIDE    (input) CHARACTER*1
        !            39: *          = 'R': compute right eigenvectors only;
        !            40: *          = 'L': compute left eigenvectors only;
        !            41: *          = 'B': compute both right and left eigenvectors.
        !            42: *
        !            43: *  EIGSRC  (input) CHARACTER*1
        !            44: *          Specifies the source of eigenvalues supplied in W:
        !            45: *          = 'Q': the eigenvalues were found using ZHSEQR; thus, if
        !            46: *                 H has zero subdiagonal elements, and so is
        !            47: *                 block-triangular, then the j-th eigenvalue can be
        !            48: *                 assumed to be an eigenvalue of the block containing
        !            49: *                 the j-th row/column.  This property allows ZHSEIN to
        !            50: *                 perform inverse iteration on just one diagonal block.
        !            51: *          = 'N': no assumptions are made on the correspondence
        !            52: *                 between eigenvalues and diagonal blocks.  In this
        !            53: *                 case, ZHSEIN must always perform inverse iteration
        !            54: *                 using the whole matrix H.
        !            55: *
        !            56: *  INITV   (input) CHARACTER*1
        !            57: *          = 'N': no initial vectors are supplied;
        !            58: *          = 'U': user-supplied initial vectors are stored in the arrays
        !            59: *                 VL and/or VR.
        !            60: *
        !            61: *  SELECT  (input) LOGICAL array, dimension (N)
        !            62: *          Specifies the eigenvectors to be computed. To select the
        !            63: *          eigenvector corresponding to the eigenvalue W(j),
        !            64: *          SELECT(j) must be set to .TRUE..
        !            65: *
        !            66: *  N       (input) INTEGER
        !            67: *          The order of the matrix H.  N >= 0.
        !            68: *
        !            69: *  H       (input) COMPLEX*16 array, dimension (LDH,N)
        !            70: *          The upper Hessenberg matrix H.
        !            71: *
        !            72: *  LDH     (input) INTEGER
        !            73: *          The leading dimension of the array H.  LDH >= max(1,N).
        !            74: *
        !            75: *  W       (input/output) COMPLEX*16 array, dimension (N)
        !            76: *          On entry, the eigenvalues of H.
        !            77: *          On exit, the real parts of W may have been altered since
        !            78: *          close eigenvalues are perturbed slightly in searching for
        !            79: *          independent eigenvectors.
        !            80: *
        !            81: *  VL      (input/output) COMPLEX*16 array, dimension (LDVL,MM)
        !            82: *          On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
        !            83: *          contain starting vectors for the inverse iteration for the
        !            84: *          left eigenvectors; the starting vector for each eigenvector
        !            85: *          must be in the same column in which the eigenvector will be
        !            86: *          stored.
        !            87: *          On exit, if SIDE = 'L' or 'B', the left eigenvectors
        !            88: *          specified by SELECT will be stored consecutively in the
        !            89: *          columns of VL, in the same order as their eigenvalues.
        !            90: *          If SIDE = 'R', VL is not referenced.
        !            91: *
        !            92: *  LDVL    (input) INTEGER
        !            93: *          The leading dimension of the array VL.
        !            94: *          LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
        !            95: *
        !            96: *  VR      (input/output) COMPLEX*16 array, dimension (LDVR,MM)
        !            97: *          On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
        !            98: *          contain starting vectors for the inverse iteration for the
        !            99: *          right eigenvectors; the starting vector for each eigenvector
        !           100: *          must be in the same column in which the eigenvector will be
        !           101: *          stored.
        !           102: *          On exit, if SIDE = 'R' or 'B', the right eigenvectors
        !           103: *          specified by SELECT will be stored consecutively in the
        !           104: *          columns of VR, in the same order as their eigenvalues.
        !           105: *          If SIDE = 'L', VR is not referenced.
        !           106: *
        !           107: *  LDVR    (input) INTEGER
        !           108: *          The leading dimension of the array VR.
        !           109: *          LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
        !           110: *
        !           111: *  MM      (input) INTEGER
        !           112: *          The number of columns in the arrays VL and/or VR. MM >= M.
        !           113: *
        !           114: *  M       (output) INTEGER
        !           115: *          The number of columns in the arrays VL and/or VR required to
        !           116: *          store the eigenvectors (= the number of .TRUE. elements in
        !           117: *          SELECT).
        !           118: *
        !           119: *  WORK    (workspace) COMPLEX*16 array, dimension (N*N)
        !           120: *
        !           121: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
        !           122: *
        !           123: *  IFAILL  (output) INTEGER array, dimension (MM)
        !           124: *          If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
        !           125: *          eigenvector in the i-th column of VL (corresponding to the
        !           126: *          eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
        !           127: *          eigenvector converged satisfactorily.
        !           128: *          If SIDE = 'R', IFAILL is not referenced.
        !           129: *
        !           130: *  IFAILR  (output) INTEGER array, dimension (MM)
        !           131: *          If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
        !           132: *          eigenvector in the i-th column of VR (corresponding to the
        !           133: *          eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
        !           134: *          eigenvector converged satisfactorily.
        !           135: *          If SIDE = 'L', IFAILR is not referenced.
        !           136: *
        !           137: *  INFO    (output) INTEGER
        !           138: *          = 0:  successful exit
        !           139: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           140: *          > 0:  if INFO = i, i is the number of eigenvectors which
        !           141: *                failed to converge; see IFAILL and IFAILR for further
        !           142: *                details.
        !           143: *
        !           144: *  Further Details
        !           145: *  ===============
        !           146: *
        !           147: *  Each eigenvector is normalized so that the element of largest
        !           148: *  magnitude has magnitude 1; here the magnitude of a complex number
        !           149: *  (x,y) is taken to be |x|+|y|.
        !           150: *
        !           151: *  =====================================================================
        !           152: *
        !           153: *     .. Parameters ..
        !           154:       COMPLEX*16         ZERO
        !           155:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
        !           156:       DOUBLE PRECISION   RZERO
        !           157:       PARAMETER          ( RZERO = 0.0D+0 )
        !           158: *     ..
        !           159: *     .. Local Scalars ..
        !           160:       LOGICAL            BOTHV, FROMQR, LEFTV, NOINIT, RIGHTV
        !           161:       INTEGER            I, IINFO, K, KL, KLN, KR, KS, LDWORK
        !           162:       DOUBLE PRECISION   EPS3, HNORM, SMLNUM, ULP, UNFL
        !           163:       COMPLEX*16         CDUM, WK
        !           164: *     ..
        !           165: *     .. External Functions ..
        !           166:       LOGICAL            LSAME
        !           167:       DOUBLE PRECISION   DLAMCH, ZLANHS
        !           168:       EXTERNAL           LSAME, DLAMCH, ZLANHS
        !           169: *     ..
        !           170: *     .. External Subroutines ..
        !           171:       EXTERNAL           XERBLA, ZLAEIN
        !           172: *     ..
        !           173: *     .. Intrinsic Functions ..
        !           174:       INTRINSIC          ABS, DBLE, DIMAG, MAX
        !           175: *     ..
        !           176: *     .. Statement Functions ..
        !           177:       DOUBLE PRECISION   CABS1
        !           178: *     ..
        !           179: *     .. Statement Function definitions ..
        !           180:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
        !           181: *     ..
        !           182: *     .. Executable Statements ..
        !           183: *
        !           184: *     Decode and test the input parameters.
        !           185: *
        !           186:       BOTHV = LSAME( SIDE, 'B' )
        !           187:       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
        !           188:       LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
        !           189: *
        !           190:       FROMQR = LSAME( EIGSRC, 'Q' )
        !           191: *
        !           192:       NOINIT = LSAME( INITV, 'N' )
        !           193: *
        !           194: *     Set M to the number of columns required to store the selected
        !           195: *     eigenvectors.
        !           196: *
        !           197:       M = 0
        !           198:       DO 10 K = 1, N
        !           199:          IF( SELECT( K ) )
        !           200:      $      M = M + 1
        !           201:    10 CONTINUE
        !           202: *
        !           203:       INFO = 0
        !           204:       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
        !           205:          INFO = -1
        !           206:       ELSE IF( .NOT.FROMQR .AND. .NOT.LSAME( EIGSRC, 'N' ) ) THEN
        !           207:          INFO = -2
        !           208:       ELSE IF( .NOT.NOINIT .AND. .NOT.LSAME( INITV, 'U' ) ) THEN
        !           209:          INFO = -3
        !           210:       ELSE IF( N.LT.0 ) THEN
        !           211:          INFO = -5
        !           212:       ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
        !           213:          INFO = -7
        !           214:       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
        !           215:          INFO = -10
        !           216:       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
        !           217:          INFO = -12
        !           218:       ELSE IF( MM.LT.M ) THEN
        !           219:          INFO = -13
        !           220:       END IF
        !           221:       IF( INFO.NE.0 ) THEN
        !           222:          CALL XERBLA( 'ZHSEIN', -INFO )
        !           223:          RETURN
        !           224:       END IF
        !           225: *
        !           226: *     Quick return if possible.
        !           227: *
        !           228:       IF( N.EQ.0 )
        !           229:      $   RETURN
        !           230: *
        !           231: *     Set machine-dependent constants.
        !           232: *
        !           233:       UNFL = DLAMCH( 'Safe minimum' )
        !           234:       ULP = DLAMCH( 'Precision' )
        !           235:       SMLNUM = UNFL*( N / ULP )
        !           236: *
        !           237:       LDWORK = N
        !           238: *
        !           239:       KL = 1
        !           240:       KLN = 0
        !           241:       IF( FROMQR ) THEN
        !           242:          KR = 0
        !           243:       ELSE
        !           244:          KR = N
        !           245:       END IF
        !           246:       KS = 1
        !           247: *
        !           248:       DO 100 K = 1, N
        !           249:          IF( SELECT( K ) ) THEN
        !           250: *
        !           251: *           Compute eigenvector(s) corresponding to W(K).
        !           252: *
        !           253:             IF( FROMQR ) THEN
        !           254: *
        !           255: *              If affiliation of eigenvalues is known, check whether
        !           256: *              the matrix splits.
        !           257: *
        !           258: *              Determine KL and KR such that 1 <= KL <= K <= KR <= N
        !           259: *              and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or
        !           260: *              KR = N).
        !           261: *
        !           262: *              Then inverse iteration can be performed with the
        !           263: *              submatrix H(KL:N,KL:N) for a left eigenvector, and with
        !           264: *              the submatrix H(1:KR,1:KR) for a right eigenvector.
        !           265: *
        !           266:                DO 20 I = K, KL + 1, -1
        !           267:                   IF( H( I, I-1 ).EQ.ZERO )
        !           268:      $               GO TO 30
        !           269:    20          CONTINUE
        !           270:    30          CONTINUE
        !           271:                KL = I
        !           272:                IF( K.GT.KR ) THEN
        !           273:                   DO 40 I = K, N - 1
        !           274:                      IF( H( I+1, I ).EQ.ZERO )
        !           275:      $                  GO TO 50
        !           276:    40             CONTINUE
        !           277:    50             CONTINUE
        !           278:                   KR = I
        !           279:                END IF
        !           280:             END IF
        !           281: *
        !           282:             IF( KL.NE.KLN ) THEN
        !           283:                KLN = KL
        !           284: *
        !           285: *              Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it
        !           286: *              has not ben computed before.
        !           287: *
        !           288:                HNORM = ZLANHS( 'I', KR-KL+1, H( KL, KL ), LDH, RWORK )
        !           289:                IF( HNORM.GT.RZERO ) THEN
        !           290:                   EPS3 = HNORM*ULP
        !           291:                ELSE
        !           292:                   EPS3 = SMLNUM
        !           293:                END IF
        !           294:             END IF
        !           295: *
        !           296: *           Perturb eigenvalue if it is close to any previous
        !           297: *           selected eigenvalues affiliated to the submatrix
        !           298: *           H(KL:KR,KL:KR). Close roots are modified by EPS3.
        !           299: *
        !           300:             WK = W( K )
        !           301:    60       CONTINUE
        !           302:             DO 70 I = K - 1, KL, -1
        !           303:                IF( SELECT( I ) .AND. CABS1( W( I )-WK ).LT.EPS3 ) THEN
        !           304:                   WK = WK + EPS3
        !           305:                   GO TO 60
        !           306:                END IF
        !           307:    70       CONTINUE
        !           308:             W( K ) = WK
        !           309: *
        !           310:             IF( LEFTV ) THEN
        !           311: *
        !           312: *              Compute left eigenvector.
        !           313: *
        !           314:                CALL ZLAEIN( .FALSE., NOINIT, N-KL+1, H( KL, KL ), LDH,
        !           315:      $                      WK, VL( KL, KS ), WORK, LDWORK, RWORK, EPS3,
        !           316:      $                      SMLNUM, IINFO )
        !           317:                IF( IINFO.GT.0 ) THEN
        !           318:                   INFO = INFO + 1
        !           319:                   IFAILL( KS ) = K
        !           320:                ELSE
        !           321:                   IFAILL( KS ) = 0
        !           322:                END IF
        !           323:                DO 80 I = 1, KL - 1
        !           324:                   VL( I, KS ) = ZERO
        !           325:    80          CONTINUE
        !           326:             END IF
        !           327:             IF( RIGHTV ) THEN
        !           328: *
        !           329: *              Compute right eigenvector.
        !           330: *
        !           331:                CALL ZLAEIN( .TRUE., NOINIT, KR, H, LDH, WK, VR( 1, KS ),
        !           332:      $                      WORK, LDWORK, RWORK, EPS3, SMLNUM, IINFO )
        !           333:                IF( IINFO.GT.0 ) THEN
        !           334:                   INFO = INFO + 1
        !           335:                   IFAILR( KS ) = K
        !           336:                ELSE
        !           337:                   IFAILR( KS ) = 0
        !           338:                END IF
        !           339:                DO 90 I = KR + 1, N
        !           340:                   VR( I, KS ) = ZERO
        !           341:    90          CONTINUE
        !           342:             END IF
        !           343:             KS = KS + 1
        !           344:          END IF
        !           345:   100 CONTINUE
        !           346: *
        !           347:       RETURN
        !           348: *
        !           349: *     End of ZHSEIN
        !           350: *
        !           351:       END

CVSweb interface <joel.bertrand@systella.fr>