File:  [local] / rpl / lapack / lapack / zhptrs.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:27 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZHPTRS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHPTRS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhptrs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhptrs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhptrs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDB, N, NRHS
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         AP( * ), B( LDB, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZHPTRS solves a system of linear equations A*X = B with a complex
   39: *> Hermitian matrix A stored in packed format using the factorization
   40: *> A = U*D*U**H or A = L*D*L**H computed by ZHPTRF.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the details of the factorization are stored
   50: *>          as an upper or lower triangular matrix.
   51: *>          = 'U':  Upper triangular, form is A = U*D*U**H;
   52: *>          = 'L':  Lower triangular, form is A = L*D*L**H.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] NRHS
   62: *> \verbatim
   63: *>          NRHS is INTEGER
   64: *>          The number of right hand sides, i.e., the number of columns
   65: *>          of the matrix B.  NRHS >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] AP
   69: *> \verbatim
   70: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   71: *>          The block diagonal matrix D and the multipliers used to
   72: *>          obtain the factor U or L as computed by ZHPTRF, stored as a
   73: *>          packed triangular matrix.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] IPIV
   77: *> \verbatim
   78: *>          IPIV is INTEGER array, dimension (N)
   79: *>          Details of the interchanges and the block structure of D
   80: *>          as determined by ZHPTRF.
   81: *> \endverbatim
   82: *>
   83: *> \param[in,out] B
   84: *> \verbatim
   85: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
   86: *>          On entry, the right hand side matrix B.
   87: *>          On exit, the solution matrix X.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] LDB
   91: *> \verbatim
   92: *>          LDB is INTEGER
   93: *>          The leading dimension of the array B.  LDB >= max(1,N).
   94: *> \endverbatim
   95: *>
   96: *> \param[out] INFO
   97: *> \verbatim
   98: *>          INFO is INTEGER
   99: *>          = 0:  successful exit
  100: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  101: *> \endverbatim
  102: *
  103: *  Authors:
  104: *  ========
  105: *
  106: *> \author Univ. of Tennessee
  107: *> \author Univ. of California Berkeley
  108: *> \author Univ. of Colorado Denver
  109: *> \author NAG Ltd.
  110: *
  111: *> \ingroup complex16OTHERcomputational
  112: *
  113: *  =====================================================================
  114:       SUBROUTINE ZHPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
  115: *
  116: *  -- LAPACK computational routine --
  117: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  118: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  119: *
  120: *     .. Scalar Arguments ..
  121:       CHARACTER          UPLO
  122:       INTEGER            INFO, LDB, N, NRHS
  123: *     ..
  124: *     .. Array Arguments ..
  125:       INTEGER            IPIV( * )
  126:       COMPLEX*16         AP( * ), B( LDB, * )
  127: *     ..
  128: *
  129: *  =====================================================================
  130: *
  131: *     .. Parameters ..
  132:       COMPLEX*16         ONE
  133:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  134: *     ..
  135: *     .. Local Scalars ..
  136:       LOGICAL            UPPER
  137:       INTEGER            J, K, KC, KP
  138:       DOUBLE PRECISION   S
  139:       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
  140: *     ..
  141: *     .. External Functions ..
  142:       LOGICAL            LSAME
  143:       EXTERNAL           LSAME
  144: *     ..
  145: *     .. External Subroutines ..
  146:       EXTERNAL           XERBLA, ZDSCAL, ZGEMV, ZGERU, ZLACGV, ZSWAP
  147: *     ..
  148: *     .. Intrinsic Functions ..
  149:       INTRINSIC          DBLE, DCONJG, MAX
  150: *     ..
  151: *     .. Executable Statements ..
  152: *
  153:       INFO = 0
  154:       UPPER = LSAME( UPLO, 'U' )
  155:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  156:          INFO = -1
  157:       ELSE IF( N.LT.0 ) THEN
  158:          INFO = -2
  159:       ELSE IF( NRHS.LT.0 ) THEN
  160:          INFO = -3
  161:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  162:          INFO = -7
  163:       END IF
  164:       IF( INFO.NE.0 ) THEN
  165:          CALL XERBLA( 'ZHPTRS', -INFO )
  166:          RETURN
  167:       END IF
  168: *
  169: *     Quick return if possible
  170: *
  171:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  172:      $   RETURN
  173: *
  174:       IF( UPPER ) THEN
  175: *
  176: *        Solve A*X = B, where A = U*D*U**H.
  177: *
  178: *        First solve U*D*X = B, overwriting B with X.
  179: *
  180: *        K is the main loop index, decreasing from N to 1 in steps of
  181: *        1 or 2, depending on the size of the diagonal blocks.
  182: *
  183:          K = N
  184:          KC = N*( N+1 ) / 2 + 1
  185:    10    CONTINUE
  186: *
  187: *        If K < 1, exit from loop.
  188: *
  189:          IF( K.LT.1 )
  190:      $      GO TO 30
  191: *
  192:          KC = KC - K
  193:          IF( IPIV( K ).GT.0 ) THEN
  194: *
  195: *           1 x 1 diagonal block
  196: *
  197: *           Interchange rows K and IPIV(K).
  198: *
  199:             KP = IPIV( K )
  200:             IF( KP.NE.K )
  201:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  202: *
  203: *           Multiply by inv(U(K)), where U(K) is the transformation
  204: *           stored in column K of A.
  205: *
  206:             CALL ZGERU( K-1, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
  207:      $                  B( 1, 1 ), LDB )
  208: *
  209: *           Multiply by the inverse of the diagonal block.
  210: *
  211:             S = DBLE( ONE ) / DBLE( AP( KC+K-1 ) )
  212:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
  213:             K = K - 1
  214:          ELSE
  215: *
  216: *           2 x 2 diagonal block
  217: *
  218: *           Interchange rows K-1 and -IPIV(K).
  219: *
  220:             KP = -IPIV( K )
  221:             IF( KP.NE.K-1 )
  222:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  223: *
  224: *           Multiply by inv(U(K)), where U(K) is the transformation
  225: *           stored in columns K-1 and K of A.
  226: *
  227:             CALL ZGERU( K-2, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
  228:      $                  B( 1, 1 ), LDB )
  229:             CALL ZGERU( K-2, NRHS, -ONE, AP( KC-( K-1 ) ), 1,
  230:      $                  B( K-1, 1 ), LDB, B( 1, 1 ), LDB )
  231: *
  232: *           Multiply by the inverse of the diagonal block.
  233: *
  234:             AKM1K = AP( KC+K-2 )
  235:             AKM1 = AP( KC-1 ) / AKM1K
  236:             AK = AP( KC+K-1 ) / DCONJG( AKM1K )
  237:             DENOM = AKM1*AK - ONE
  238:             DO 20 J = 1, NRHS
  239:                BKM1 = B( K-1, J ) / AKM1K
  240:                BK = B( K, J ) / DCONJG( AKM1K )
  241:                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
  242:                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
  243:    20       CONTINUE
  244:             KC = KC - K + 1
  245:             K = K - 2
  246:          END IF
  247: *
  248:          GO TO 10
  249:    30    CONTINUE
  250: *
  251: *        Next solve U**H *X = B, overwriting B with X.
  252: *
  253: *        K is the main loop index, increasing from 1 to N in steps of
  254: *        1 or 2, depending on the size of the diagonal blocks.
  255: *
  256:          K = 1
  257:          KC = 1
  258:    40    CONTINUE
  259: *
  260: *        If K > N, exit from loop.
  261: *
  262:          IF( K.GT.N )
  263:      $      GO TO 50
  264: *
  265:          IF( IPIV( K ).GT.0 ) THEN
  266: *
  267: *           1 x 1 diagonal block
  268: *
  269: *           Multiply by inv(U**H(K)), where U(K) is the transformation
  270: *           stored in column K of A.
  271: *
  272:             IF( K.GT.1 ) THEN
  273:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  274:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  275:      $                     LDB, AP( KC ), 1, ONE, B( K, 1 ), LDB )
  276:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  277:             END IF
  278: *
  279: *           Interchange rows K and IPIV(K).
  280: *
  281:             KP = IPIV( K )
  282:             IF( KP.NE.K )
  283:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  284:             KC = KC + K
  285:             K = K + 1
  286:          ELSE
  287: *
  288: *           2 x 2 diagonal block
  289: *
  290: *           Multiply by inv(U**H(K+1)), where U(K+1) is the transformation
  291: *           stored in columns K and K+1 of A.
  292: *
  293:             IF( K.GT.1 ) THEN
  294:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  295:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  296:      $                     LDB, AP( KC ), 1, ONE, B( K, 1 ), LDB )
  297:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  298: *
  299:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
  300:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  301:      $                     LDB, AP( KC+K ), 1, ONE, B( K+1, 1 ), LDB )
  302:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
  303:             END IF
  304: *
  305: *           Interchange rows K and -IPIV(K).
  306: *
  307:             KP = -IPIV( K )
  308:             IF( KP.NE.K )
  309:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  310:             KC = KC + 2*K + 1
  311:             K = K + 2
  312:          END IF
  313: *
  314:          GO TO 40
  315:    50    CONTINUE
  316: *
  317:       ELSE
  318: *
  319: *        Solve A*X = B, where A = L*D*L**H.
  320: *
  321: *        First solve L*D*X = B, overwriting B with X.
  322: *
  323: *        K is the main loop index, increasing from 1 to N in steps of
  324: *        1 or 2, depending on the size of the diagonal blocks.
  325: *
  326:          K = 1
  327:          KC = 1
  328:    60    CONTINUE
  329: *
  330: *        If K > N, exit from loop.
  331: *
  332:          IF( K.GT.N )
  333:      $      GO TO 80
  334: *
  335:          IF( IPIV( K ).GT.0 ) THEN
  336: *
  337: *           1 x 1 diagonal block
  338: *
  339: *           Interchange rows K and IPIV(K).
  340: *
  341:             KP = IPIV( K )
  342:             IF( KP.NE.K )
  343:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  344: *
  345: *           Multiply by inv(L(K)), where L(K) is the transformation
  346: *           stored in column K of A.
  347: *
  348:             IF( K.LT.N )
  349:      $         CALL ZGERU( N-K, NRHS, -ONE, AP( KC+1 ), 1, B( K, 1 ),
  350:      $                     LDB, B( K+1, 1 ), LDB )
  351: *
  352: *           Multiply by the inverse of the diagonal block.
  353: *
  354:             S = DBLE( ONE ) / DBLE( AP( KC ) )
  355:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
  356:             KC = KC + N - K + 1
  357:             K = K + 1
  358:          ELSE
  359: *
  360: *           2 x 2 diagonal block
  361: *
  362: *           Interchange rows K+1 and -IPIV(K).
  363: *
  364:             KP = -IPIV( K )
  365:             IF( KP.NE.K+1 )
  366:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  367: *
  368: *           Multiply by inv(L(K)), where L(K) is the transformation
  369: *           stored in columns K and K+1 of A.
  370: *
  371:             IF( K.LT.N-1 ) THEN
  372:                CALL ZGERU( N-K-1, NRHS, -ONE, AP( KC+2 ), 1, B( K, 1 ),
  373:      $                     LDB, B( K+2, 1 ), LDB )
  374:                CALL ZGERU( N-K-1, NRHS, -ONE, AP( KC+N-K+2 ), 1,
  375:      $                     B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
  376:             END IF
  377: *
  378: *           Multiply by the inverse of the diagonal block.
  379: *
  380:             AKM1K = AP( KC+1 )
  381:             AKM1 = AP( KC ) / DCONJG( AKM1K )
  382:             AK = AP( KC+N-K+1 ) / AKM1K
  383:             DENOM = AKM1*AK - ONE
  384:             DO 70 J = 1, NRHS
  385:                BKM1 = B( K, J ) / DCONJG( AKM1K )
  386:                BK = B( K+1, J ) / AKM1K
  387:                B( K, J ) = ( AK*BKM1-BK ) / DENOM
  388:                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  389:    70       CONTINUE
  390:             KC = KC + 2*( N-K ) + 1
  391:             K = K + 2
  392:          END IF
  393: *
  394:          GO TO 60
  395:    80    CONTINUE
  396: *
  397: *        Next solve L**H *X = B, overwriting B with X.
  398: *
  399: *        K is the main loop index, decreasing from N to 1 in steps of
  400: *        1 or 2, depending on the size of the diagonal blocks.
  401: *
  402:          K = N
  403:          KC = N*( N+1 ) / 2 + 1
  404:    90    CONTINUE
  405: *
  406: *        If K < 1, exit from loop.
  407: *
  408:          IF( K.LT.1 )
  409:      $      GO TO 100
  410: *
  411:          KC = KC - ( N-K+1 )
  412:          IF( IPIV( K ).GT.0 ) THEN
  413: *
  414: *           1 x 1 diagonal block
  415: *
  416: *           Multiply by inv(L**H(K)), where L(K) is the transformation
  417: *           stored in column K of A.
  418: *
  419:             IF( K.LT.N ) THEN
  420:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  421:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  422:      $                     B( K+1, 1 ), LDB, AP( KC+1 ), 1, ONE,
  423:      $                     B( K, 1 ), LDB )
  424:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  425:             END IF
  426: *
  427: *           Interchange rows K and IPIV(K).
  428: *
  429:             KP = IPIV( K )
  430:             IF( KP.NE.K )
  431:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  432:             K = K - 1
  433:          ELSE
  434: *
  435: *           2 x 2 diagonal block
  436: *
  437: *           Multiply by inv(L**H(K-1)), where L(K-1) is the transformation
  438: *           stored in columns K-1 and K of A.
  439: *
  440:             IF( K.LT.N ) THEN
  441:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  442:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  443:      $                     B( K+1, 1 ), LDB, AP( KC+1 ), 1, ONE,
  444:      $                     B( K, 1 ), LDB )
  445:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  446: *
  447:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
  448:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  449:      $                     B( K+1, 1 ), LDB, AP( KC-( N-K ) ), 1, ONE,
  450:      $                     B( K-1, 1 ), LDB )
  451:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
  452:             END IF
  453: *
  454: *           Interchange rows K and -IPIV(K).
  455: *
  456:             KP = -IPIV( K )
  457:             IF( KP.NE.K )
  458:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  459:             KC = KC - ( N-K+2 )
  460:             K = K - 2
  461:          END IF
  462: *
  463:          GO TO 90
  464:   100    CONTINUE
  465:       END IF
  466: *
  467:       RETURN
  468: *
  469: *     End of ZHPTRS
  470: *
  471:       END

CVSweb interface <joel.bertrand@systella.fr>