File:  [local] / rpl / lapack / lapack / zhptrs.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Wed Apr 21 13:45:32 2010 UTC (14 years, 1 month ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_17, rpl-4_0_16, rpl-4_0_15, HEAD
En route pour la 4.0.15 !

    1:       SUBROUTINE ZHPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INFO, LDB, N, NRHS
   11: *     ..
   12: *     .. Array Arguments ..
   13:       INTEGER            IPIV( * )
   14:       COMPLEX*16         AP( * ), B( LDB, * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZHPTRS solves a system of linear equations A*X = B with a complex
   21: *  Hermitian matrix A stored in packed format using the factorization
   22: *  A = U*D*U**H or A = L*D*L**H computed by ZHPTRF.
   23: *
   24: *  Arguments
   25: *  =========
   26: *
   27: *  UPLO    (input) CHARACTER*1
   28: *          Specifies whether the details of the factorization are stored
   29: *          as an upper or lower triangular matrix.
   30: *          = 'U':  Upper triangular, form is A = U*D*U**H;
   31: *          = 'L':  Lower triangular, form is A = L*D*L**H.
   32: *
   33: *  N       (input) INTEGER
   34: *          The order of the matrix A.  N >= 0.
   35: *
   36: *  NRHS    (input) INTEGER
   37: *          The number of right hand sides, i.e., the number of columns
   38: *          of the matrix B.  NRHS >= 0.
   39: *
   40: *  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)
   41: *          The block diagonal matrix D and the multipliers used to
   42: *          obtain the factor U or L as computed by ZHPTRF, stored as a
   43: *          packed triangular matrix.
   44: *
   45: *  IPIV    (input) INTEGER array, dimension (N)
   46: *          Details of the interchanges and the block structure of D
   47: *          as determined by ZHPTRF.
   48: *
   49: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
   50: *          On entry, the right hand side matrix B.
   51: *          On exit, the solution matrix X.
   52: *
   53: *  LDB     (input) INTEGER
   54: *          The leading dimension of the array B.  LDB >= max(1,N).
   55: *
   56: *  INFO    (output) INTEGER
   57: *          = 0:  successful exit
   58: *          < 0: if INFO = -i, the i-th argument had an illegal value
   59: *
   60: *  =====================================================================
   61: *
   62: *     .. Parameters ..
   63:       COMPLEX*16         ONE
   64:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
   65: *     ..
   66: *     .. Local Scalars ..
   67:       LOGICAL            UPPER
   68:       INTEGER            J, K, KC, KP
   69:       DOUBLE PRECISION   S
   70:       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
   71: *     ..
   72: *     .. External Functions ..
   73:       LOGICAL            LSAME
   74:       EXTERNAL           LSAME
   75: *     ..
   76: *     .. External Subroutines ..
   77:       EXTERNAL           XERBLA, ZDSCAL, ZGEMV, ZGERU, ZLACGV, ZSWAP
   78: *     ..
   79: *     .. Intrinsic Functions ..
   80:       INTRINSIC          DBLE, DCONJG, MAX
   81: *     ..
   82: *     .. Executable Statements ..
   83: *
   84:       INFO = 0
   85:       UPPER = LSAME( UPLO, 'U' )
   86:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
   87:          INFO = -1
   88:       ELSE IF( N.LT.0 ) THEN
   89:          INFO = -2
   90:       ELSE IF( NRHS.LT.0 ) THEN
   91:          INFO = -3
   92:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
   93:          INFO = -7
   94:       END IF
   95:       IF( INFO.NE.0 ) THEN
   96:          CALL XERBLA( 'ZHPTRS', -INFO )
   97:          RETURN
   98:       END IF
   99: *
  100: *     Quick return if possible
  101: *
  102:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  103:      $   RETURN
  104: *
  105:       IF( UPPER ) THEN
  106: *
  107: *        Solve A*X = B, where A = U*D*U'.
  108: *
  109: *        First solve U*D*X = B, overwriting B with X.
  110: *
  111: *        K is the main loop index, decreasing from N to 1 in steps of
  112: *        1 or 2, depending on the size of the diagonal blocks.
  113: *
  114:          K = N
  115:          KC = N*( N+1 ) / 2 + 1
  116:    10    CONTINUE
  117: *
  118: *        If K < 1, exit from loop.
  119: *
  120:          IF( K.LT.1 )
  121:      $      GO TO 30
  122: *
  123:          KC = KC - K
  124:          IF( IPIV( K ).GT.0 ) THEN
  125: *
  126: *           1 x 1 diagonal block
  127: *
  128: *           Interchange rows K and IPIV(K).
  129: *
  130:             KP = IPIV( K )
  131:             IF( KP.NE.K )
  132:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  133: *
  134: *           Multiply by inv(U(K)), where U(K) is the transformation
  135: *           stored in column K of A.
  136: *
  137:             CALL ZGERU( K-1, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
  138:      $                  B( 1, 1 ), LDB )
  139: *
  140: *           Multiply by the inverse of the diagonal block.
  141: *
  142:             S = DBLE( ONE ) / DBLE( AP( KC+K-1 ) )
  143:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
  144:             K = K - 1
  145:          ELSE
  146: *
  147: *           2 x 2 diagonal block
  148: *
  149: *           Interchange rows K-1 and -IPIV(K).
  150: *
  151:             KP = -IPIV( K )
  152:             IF( KP.NE.K-1 )
  153:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  154: *
  155: *           Multiply by inv(U(K)), where U(K) is the transformation
  156: *           stored in columns K-1 and K of A.
  157: *
  158:             CALL ZGERU( K-2, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
  159:      $                  B( 1, 1 ), LDB )
  160:             CALL ZGERU( K-2, NRHS, -ONE, AP( KC-( K-1 ) ), 1,
  161:      $                  B( K-1, 1 ), LDB, B( 1, 1 ), LDB )
  162: *
  163: *           Multiply by the inverse of the diagonal block.
  164: *
  165:             AKM1K = AP( KC+K-2 )
  166:             AKM1 = AP( KC-1 ) / AKM1K
  167:             AK = AP( KC+K-1 ) / DCONJG( AKM1K )
  168:             DENOM = AKM1*AK - ONE
  169:             DO 20 J = 1, NRHS
  170:                BKM1 = B( K-1, J ) / AKM1K
  171:                BK = B( K, J ) / DCONJG( AKM1K )
  172:                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
  173:                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
  174:    20       CONTINUE
  175:             KC = KC - K + 1
  176:             K = K - 2
  177:          END IF
  178: *
  179:          GO TO 10
  180:    30    CONTINUE
  181: *
  182: *        Next solve U'*X = B, overwriting B with X.
  183: *
  184: *        K is the main loop index, increasing from 1 to N in steps of
  185: *        1 or 2, depending on the size of the diagonal blocks.
  186: *
  187:          K = 1
  188:          KC = 1
  189:    40    CONTINUE
  190: *
  191: *        If K > N, exit from loop.
  192: *
  193:          IF( K.GT.N )
  194:      $      GO TO 50
  195: *
  196:          IF( IPIV( K ).GT.0 ) THEN
  197: *
  198: *           1 x 1 diagonal block
  199: *
  200: *           Multiply by inv(U'(K)), where U(K) is the transformation
  201: *           stored in column K of A.
  202: *
  203:             IF( K.GT.1 ) THEN
  204:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  205:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  206:      $                     LDB, AP( KC ), 1, ONE, B( K, 1 ), LDB )
  207:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  208:             END IF
  209: *
  210: *           Interchange rows K and IPIV(K).
  211: *
  212:             KP = IPIV( K )
  213:             IF( KP.NE.K )
  214:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  215:             KC = KC + K
  216:             K = K + 1
  217:          ELSE
  218: *
  219: *           2 x 2 diagonal block
  220: *
  221: *           Multiply by inv(U'(K+1)), where U(K+1) is the transformation
  222: *           stored in columns K and K+1 of A.
  223: *
  224:             IF( K.GT.1 ) THEN
  225:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  226:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  227:      $                     LDB, AP( KC ), 1, ONE, B( K, 1 ), LDB )
  228:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  229: *
  230:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
  231:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  232:      $                     LDB, AP( KC+K ), 1, ONE, B( K+1, 1 ), LDB )
  233:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
  234:             END IF
  235: *
  236: *           Interchange rows K and -IPIV(K).
  237: *
  238:             KP = -IPIV( K )
  239:             IF( KP.NE.K )
  240:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  241:             KC = KC + 2*K + 1
  242:             K = K + 2
  243:          END IF
  244: *
  245:          GO TO 40
  246:    50    CONTINUE
  247: *
  248:       ELSE
  249: *
  250: *        Solve A*X = B, where A = L*D*L'.
  251: *
  252: *        First solve L*D*X = B, overwriting B with X.
  253: *
  254: *        K is the main loop index, increasing from 1 to N in steps of
  255: *        1 or 2, depending on the size of the diagonal blocks.
  256: *
  257:          K = 1
  258:          KC = 1
  259:    60    CONTINUE
  260: *
  261: *        If K > N, exit from loop.
  262: *
  263:          IF( K.GT.N )
  264:      $      GO TO 80
  265: *
  266:          IF( IPIV( K ).GT.0 ) THEN
  267: *
  268: *           1 x 1 diagonal block
  269: *
  270: *           Interchange rows K and IPIV(K).
  271: *
  272:             KP = IPIV( K )
  273:             IF( KP.NE.K )
  274:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  275: *
  276: *           Multiply by inv(L(K)), where L(K) is the transformation
  277: *           stored in column K of A.
  278: *
  279:             IF( K.LT.N )
  280:      $         CALL ZGERU( N-K, NRHS, -ONE, AP( KC+1 ), 1, B( K, 1 ),
  281:      $                     LDB, B( K+1, 1 ), LDB )
  282: *
  283: *           Multiply by the inverse of the diagonal block.
  284: *
  285:             S = DBLE( ONE ) / DBLE( AP( KC ) )
  286:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
  287:             KC = KC + N - K + 1
  288:             K = K + 1
  289:          ELSE
  290: *
  291: *           2 x 2 diagonal block
  292: *
  293: *           Interchange rows K+1 and -IPIV(K).
  294: *
  295:             KP = -IPIV( K )
  296:             IF( KP.NE.K+1 )
  297:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  298: *
  299: *           Multiply by inv(L(K)), where L(K) is the transformation
  300: *           stored in columns K and K+1 of A.
  301: *
  302:             IF( K.LT.N-1 ) THEN
  303:                CALL ZGERU( N-K-1, NRHS, -ONE, AP( KC+2 ), 1, B( K, 1 ),
  304:      $                     LDB, B( K+2, 1 ), LDB )
  305:                CALL ZGERU( N-K-1, NRHS, -ONE, AP( KC+N-K+2 ), 1,
  306:      $                     B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
  307:             END IF
  308: *
  309: *           Multiply by the inverse of the diagonal block.
  310: *
  311:             AKM1K = AP( KC+1 )
  312:             AKM1 = AP( KC ) / DCONJG( AKM1K )
  313:             AK = AP( KC+N-K+1 ) / AKM1K
  314:             DENOM = AKM1*AK - ONE
  315:             DO 70 J = 1, NRHS
  316:                BKM1 = B( K, J ) / DCONJG( AKM1K )
  317:                BK = B( K+1, J ) / AKM1K
  318:                B( K, J ) = ( AK*BKM1-BK ) / DENOM
  319:                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  320:    70       CONTINUE
  321:             KC = KC + 2*( N-K ) + 1
  322:             K = K + 2
  323:          END IF
  324: *
  325:          GO TO 60
  326:    80    CONTINUE
  327: *
  328: *        Next solve L'*X = B, overwriting B with X.
  329: *
  330: *        K is the main loop index, decreasing from N to 1 in steps of
  331: *        1 or 2, depending on the size of the diagonal blocks.
  332: *
  333:          K = N
  334:          KC = N*( N+1 ) / 2 + 1
  335:    90    CONTINUE
  336: *
  337: *        If K < 1, exit from loop.
  338: *
  339:          IF( K.LT.1 )
  340:      $      GO TO 100
  341: *
  342:          KC = KC - ( N-K+1 )
  343:          IF( IPIV( K ).GT.0 ) THEN
  344: *
  345: *           1 x 1 diagonal block
  346: *
  347: *           Multiply by inv(L'(K)), where L(K) is the transformation
  348: *           stored in column K of A.
  349: *
  350:             IF( K.LT.N ) THEN
  351:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  352:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  353:      $                     B( K+1, 1 ), LDB, AP( KC+1 ), 1, ONE,
  354:      $                     B( K, 1 ), LDB )
  355:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  356:             END IF
  357: *
  358: *           Interchange rows K and IPIV(K).
  359: *
  360:             KP = IPIV( K )
  361:             IF( KP.NE.K )
  362:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  363:             K = K - 1
  364:          ELSE
  365: *
  366: *           2 x 2 diagonal block
  367: *
  368: *           Multiply by inv(L'(K-1)), where L(K-1) is the transformation
  369: *           stored in columns K-1 and K of A.
  370: *
  371:             IF( K.LT.N ) THEN
  372:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  373:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  374:      $                     B( K+1, 1 ), LDB, AP( KC+1 ), 1, ONE,
  375:      $                     B( K, 1 ), LDB )
  376:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  377: *
  378:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
  379:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  380:      $                     B( K+1, 1 ), LDB, AP( KC-( N-K ) ), 1, ONE,
  381:      $                     B( K-1, 1 ), LDB )
  382:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
  383:             END IF
  384: *
  385: *           Interchange rows K and -IPIV(K).
  386: *
  387:             KP = -IPIV( K )
  388:             IF( KP.NE.K )
  389:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  390:             KC = KC - ( N-K+2 )
  391:             K = K - 2
  392:          END IF
  393: *
  394:          GO TO 90
  395:   100    CONTINUE
  396:       END IF
  397: *
  398:       RETURN
  399: *
  400: *     End of ZHPTRS
  401: *
  402:       END

CVSweb interface <joel.bertrand@systella.fr>