File:  [local] / rpl / lapack / lapack / zhptrs.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:22 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZHPTRS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHPTRS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhptrs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhptrs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhptrs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDB, N, NRHS
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         AP( * ), B( LDB, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZHPTRS solves a system of linear equations A*X = B with a complex
   39: *> Hermitian matrix A stored in packed format using the factorization
   40: *> A = U*D*U**H or A = L*D*L**H computed by ZHPTRF.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the details of the factorization are stored
   50: *>          as an upper or lower triangular matrix.
   51: *>          = 'U':  Upper triangular, form is A = U*D*U**H;
   52: *>          = 'L':  Lower triangular, form is A = L*D*L**H.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] NRHS
   62: *> \verbatim
   63: *>          NRHS is INTEGER
   64: *>          The number of right hand sides, i.e., the number of columns
   65: *>          of the matrix B.  NRHS >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] AP
   69: *> \verbatim
   70: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   71: *>          The block diagonal matrix D and the multipliers used to
   72: *>          obtain the factor U or L as computed by ZHPTRF, stored as a
   73: *>          packed triangular matrix.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] IPIV
   77: *> \verbatim
   78: *>          IPIV is INTEGER array, dimension (N)
   79: *>          Details of the interchanges and the block structure of D
   80: *>          as determined by ZHPTRF.
   81: *> \endverbatim
   82: *>
   83: *> \param[in,out] B
   84: *> \verbatim
   85: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
   86: *>          On entry, the right hand side matrix B.
   87: *>          On exit, the solution matrix X.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] LDB
   91: *> \verbatim
   92: *>          LDB is INTEGER
   93: *>          The leading dimension of the array B.  LDB >= max(1,N).
   94: *> \endverbatim
   95: *>
   96: *> \param[out] INFO
   97: *> \verbatim
   98: *>          INFO is INTEGER
   99: *>          = 0:  successful exit
  100: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  101: *> \endverbatim
  102: *
  103: *  Authors:
  104: *  ========
  105: *
  106: *> \author Univ. of Tennessee
  107: *> \author Univ. of California Berkeley
  108: *> \author Univ. of Colorado Denver
  109: *> \author NAG Ltd.
  110: *
  111: *> \date December 2016
  112: *
  113: *> \ingroup complex16OTHERcomputational
  114: *
  115: *  =====================================================================
  116:       SUBROUTINE ZHPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
  117: *
  118: *  -- LAPACK computational routine (version 3.7.0) --
  119: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  120: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  121: *     December 2016
  122: *
  123: *     .. Scalar Arguments ..
  124:       CHARACTER          UPLO
  125:       INTEGER            INFO, LDB, N, NRHS
  126: *     ..
  127: *     .. Array Arguments ..
  128:       INTEGER            IPIV( * )
  129:       COMPLEX*16         AP( * ), B( LDB, * )
  130: *     ..
  131: *
  132: *  =====================================================================
  133: *
  134: *     .. Parameters ..
  135:       COMPLEX*16         ONE
  136:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  137: *     ..
  138: *     .. Local Scalars ..
  139:       LOGICAL            UPPER
  140:       INTEGER            J, K, KC, KP
  141:       DOUBLE PRECISION   S
  142:       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
  143: *     ..
  144: *     .. External Functions ..
  145:       LOGICAL            LSAME
  146:       EXTERNAL           LSAME
  147: *     ..
  148: *     .. External Subroutines ..
  149:       EXTERNAL           XERBLA, ZDSCAL, ZGEMV, ZGERU, ZLACGV, ZSWAP
  150: *     ..
  151: *     .. Intrinsic Functions ..
  152:       INTRINSIC          DBLE, DCONJG, MAX
  153: *     ..
  154: *     .. Executable Statements ..
  155: *
  156:       INFO = 0
  157:       UPPER = LSAME( UPLO, 'U' )
  158:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  159:          INFO = -1
  160:       ELSE IF( N.LT.0 ) THEN
  161:          INFO = -2
  162:       ELSE IF( NRHS.LT.0 ) THEN
  163:          INFO = -3
  164:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  165:          INFO = -7
  166:       END IF
  167:       IF( INFO.NE.0 ) THEN
  168:          CALL XERBLA( 'ZHPTRS', -INFO )
  169:          RETURN
  170:       END IF
  171: *
  172: *     Quick return if possible
  173: *
  174:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  175:      $   RETURN
  176: *
  177:       IF( UPPER ) THEN
  178: *
  179: *        Solve A*X = B, where A = U*D*U**H.
  180: *
  181: *        First solve U*D*X = B, overwriting B with X.
  182: *
  183: *        K is the main loop index, decreasing from N to 1 in steps of
  184: *        1 or 2, depending on the size of the diagonal blocks.
  185: *
  186:          K = N
  187:          KC = N*( N+1 ) / 2 + 1
  188:    10    CONTINUE
  189: *
  190: *        If K < 1, exit from loop.
  191: *
  192:          IF( K.LT.1 )
  193:      $      GO TO 30
  194: *
  195:          KC = KC - K
  196:          IF( IPIV( K ).GT.0 ) THEN
  197: *
  198: *           1 x 1 diagonal block
  199: *
  200: *           Interchange rows K and IPIV(K).
  201: *
  202:             KP = IPIV( K )
  203:             IF( KP.NE.K )
  204:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  205: *
  206: *           Multiply by inv(U(K)), where U(K) is the transformation
  207: *           stored in column K of A.
  208: *
  209:             CALL ZGERU( K-1, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
  210:      $                  B( 1, 1 ), LDB )
  211: *
  212: *           Multiply by the inverse of the diagonal block.
  213: *
  214:             S = DBLE( ONE ) / DBLE( AP( KC+K-1 ) )
  215:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
  216:             K = K - 1
  217:          ELSE
  218: *
  219: *           2 x 2 diagonal block
  220: *
  221: *           Interchange rows K-1 and -IPIV(K).
  222: *
  223:             KP = -IPIV( K )
  224:             IF( KP.NE.K-1 )
  225:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  226: *
  227: *           Multiply by inv(U(K)), where U(K) is the transformation
  228: *           stored in columns K-1 and K of A.
  229: *
  230:             CALL ZGERU( K-2, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
  231:      $                  B( 1, 1 ), LDB )
  232:             CALL ZGERU( K-2, NRHS, -ONE, AP( KC-( K-1 ) ), 1,
  233:      $                  B( K-1, 1 ), LDB, B( 1, 1 ), LDB )
  234: *
  235: *           Multiply by the inverse of the diagonal block.
  236: *
  237:             AKM1K = AP( KC+K-2 )
  238:             AKM1 = AP( KC-1 ) / AKM1K
  239:             AK = AP( KC+K-1 ) / DCONJG( AKM1K )
  240:             DENOM = AKM1*AK - ONE
  241:             DO 20 J = 1, NRHS
  242:                BKM1 = B( K-1, J ) / AKM1K
  243:                BK = B( K, J ) / DCONJG( AKM1K )
  244:                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
  245:                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
  246:    20       CONTINUE
  247:             KC = KC - K + 1
  248:             K = K - 2
  249:          END IF
  250: *
  251:          GO TO 10
  252:    30    CONTINUE
  253: *
  254: *        Next solve U**H *X = B, overwriting B with X.
  255: *
  256: *        K is the main loop index, increasing from 1 to N in steps of
  257: *        1 or 2, depending on the size of the diagonal blocks.
  258: *
  259:          K = 1
  260:          KC = 1
  261:    40    CONTINUE
  262: *
  263: *        If K > N, exit from loop.
  264: *
  265:          IF( K.GT.N )
  266:      $      GO TO 50
  267: *
  268:          IF( IPIV( K ).GT.0 ) THEN
  269: *
  270: *           1 x 1 diagonal block
  271: *
  272: *           Multiply by inv(U**H(K)), where U(K) is the transformation
  273: *           stored in column K of A.
  274: *
  275:             IF( K.GT.1 ) THEN
  276:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  277:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  278:      $                     LDB, AP( KC ), 1, ONE, B( K, 1 ), LDB )
  279:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  280:             END IF
  281: *
  282: *           Interchange rows K and IPIV(K).
  283: *
  284:             KP = IPIV( K )
  285:             IF( KP.NE.K )
  286:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  287:             KC = KC + K
  288:             K = K + 1
  289:          ELSE
  290: *
  291: *           2 x 2 diagonal block
  292: *
  293: *           Multiply by inv(U**H(K+1)), where U(K+1) is the transformation
  294: *           stored in columns K and K+1 of A.
  295: *
  296:             IF( K.GT.1 ) THEN
  297:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  298:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  299:      $                     LDB, AP( KC ), 1, ONE, B( K, 1 ), LDB )
  300:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  301: *
  302:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
  303:                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
  304:      $                     LDB, AP( KC+K ), 1, ONE, B( K+1, 1 ), LDB )
  305:                CALL ZLACGV( NRHS, B( K+1, 1 ), LDB )
  306:             END IF
  307: *
  308: *           Interchange rows K and -IPIV(K).
  309: *
  310:             KP = -IPIV( K )
  311:             IF( KP.NE.K )
  312:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  313:             KC = KC + 2*K + 1
  314:             K = K + 2
  315:          END IF
  316: *
  317:          GO TO 40
  318:    50    CONTINUE
  319: *
  320:       ELSE
  321: *
  322: *        Solve A*X = B, where A = L*D*L**H.
  323: *
  324: *        First solve L*D*X = B, overwriting B with X.
  325: *
  326: *        K is the main loop index, increasing from 1 to N in steps of
  327: *        1 or 2, depending on the size of the diagonal blocks.
  328: *
  329:          K = 1
  330:          KC = 1
  331:    60    CONTINUE
  332: *
  333: *        If K > N, exit from loop.
  334: *
  335:          IF( K.GT.N )
  336:      $      GO TO 80
  337: *
  338:          IF( IPIV( K ).GT.0 ) THEN
  339: *
  340: *           1 x 1 diagonal block
  341: *
  342: *           Interchange rows K and IPIV(K).
  343: *
  344:             KP = IPIV( K )
  345:             IF( KP.NE.K )
  346:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  347: *
  348: *           Multiply by inv(L(K)), where L(K) is the transformation
  349: *           stored in column K of A.
  350: *
  351:             IF( K.LT.N )
  352:      $         CALL ZGERU( N-K, NRHS, -ONE, AP( KC+1 ), 1, B( K, 1 ),
  353:      $                     LDB, B( K+1, 1 ), LDB )
  354: *
  355: *           Multiply by the inverse of the diagonal block.
  356: *
  357:             S = DBLE( ONE ) / DBLE( AP( KC ) )
  358:             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
  359:             KC = KC + N - K + 1
  360:             K = K + 1
  361:          ELSE
  362: *
  363: *           2 x 2 diagonal block
  364: *
  365: *           Interchange rows K+1 and -IPIV(K).
  366: *
  367:             KP = -IPIV( K )
  368:             IF( KP.NE.K+1 )
  369:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  370: *
  371: *           Multiply by inv(L(K)), where L(K) is the transformation
  372: *           stored in columns K and K+1 of A.
  373: *
  374:             IF( K.LT.N-1 ) THEN
  375:                CALL ZGERU( N-K-1, NRHS, -ONE, AP( KC+2 ), 1, B( K, 1 ),
  376:      $                     LDB, B( K+2, 1 ), LDB )
  377:                CALL ZGERU( N-K-1, NRHS, -ONE, AP( KC+N-K+2 ), 1,
  378:      $                     B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
  379:             END IF
  380: *
  381: *           Multiply by the inverse of the diagonal block.
  382: *
  383:             AKM1K = AP( KC+1 )
  384:             AKM1 = AP( KC ) / DCONJG( AKM1K )
  385:             AK = AP( KC+N-K+1 ) / AKM1K
  386:             DENOM = AKM1*AK - ONE
  387:             DO 70 J = 1, NRHS
  388:                BKM1 = B( K, J ) / DCONJG( AKM1K )
  389:                BK = B( K+1, J ) / AKM1K
  390:                B( K, J ) = ( AK*BKM1-BK ) / DENOM
  391:                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  392:    70       CONTINUE
  393:             KC = KC + 2*( N-K ) + 1
  394:             K = K + 2
  395:          END IF
  396: *
  397:          GO TO 60
  398:    80    CONTINUE
  399: *
  400: *        Next solve L**H *X = B, overwriting B with X.
  401: *
  402: *        K is the main loop index, decreasing from N to 1 in steps of
  403: *        1 or 2, depending on the size of the diagonal blocks.
  404: *
  405:          K = N
  406:          KC = N*( N+1 ) / 2 + 1
  407:    90    CONTINUE
  408: *
  409: *        If K < 1, exit from loop.
  410: *
  411:          IF( K.LT.1 )
  412:      $      GO TO 100
  413: *
  414:          KC = KC - ( N-K+1 )
  415:          IF( IPIV( K ).GT.0 ) THEN
  416: *
  417: *           1 x 1 diagonal block
  418: *
  419: *           Multiply by inv(L**H(K)), where L(K) is the transformation
  420: *           stored in column K of A.
  421: *
  422:             IF( K.LT.N ) THEN
  423:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  424:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  425:      $                     B( K+1, 1 ), LDB, AP( KC+1 ), 1, ONE,
  426:      $                     B( K, 1 ), LDB )
  427:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  428:             END IF
  429: *
  430: *           Interchange rows K and IPIV(K).
  431: *
  432:             KP = IPIV( K )
  433:             IF( KP.NE.K )
  434:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  435:             K = K - 1
  436:          ELSE
  437: *
  438: *           2 x 2 diagonal block
  439: *
  440: *           Multiply by inv(L**H(K-1)), where L(K-1) is the transformation
  441: *           stored in columns K-1 and K of A.
  442: *
  443:             IF( K.LT.N ) THEN
  444:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  445:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  446:      $                     B( K+1, 1 ), LDB, AP( KC+1 ), 1, ONE,
  447:      $                     B( K, 1 ), LDB )
  448:                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
  449: *
  450:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
  451:                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
  452:      $                     B( K+1, 1 ), LDB, AP( KC-( N-K ) ), 1, ONE,
  453:      $                     B( K-1, 1 ), LDB )
  454:                CALL ZLACGV( NRHS, B( K-1, 1 ), LDB )
  455:             END IF
  456: *
  457: *           Interchange rows K and -IPIV(K).
  458: *
  459:             KP = -IPIV( K )
  460:             IF( KP.NE.K )
  461:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  462:             KC = KC - ( N-K+2 )
  463:             K = K - 2
  464:          END IF
  465: *
  466:          GO TO 90
  467:   100    CONTINUE
  468:       END IF
  469: *
  470:       RETURN
  471: *
  472: *     End of ZHPTRS
  473: *
  474:       END

CVSweb interface <joel.bertrand@systella.fr>