File:  [local] / rpl / lapack / lapack / zhptri.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:27 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZHPTRI
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHPTRI + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhptri.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhptri.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhptri.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHPTRI( UPLO, N, AP, IPIV, WORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         AP( * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZHPTRI computes the inverse of a complex Hermitian indefinite matrix
   39: *> A in packed storage using the factorization A = U*D*U**H or
   40: *> A = L*D*L**H computed by ZHPTRF.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the details of the factorization are stored
   50: *>          as an upper or lower triangular matrix.
   51: *>          = 'U':  Upper triangular, form is A = U*D*U**H;
   52: *>          = 'L':  Lower triangular, form is A = L*D*L**H.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in,out] AP
   62: *> \verbatim
   63: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   64: *>          On entry, the block diagonal matrix D and the multipliers
   65: *>          used to obtain the factor U or L as computed by ZHPTRF,
   66: *>          stored as a packed triangular matrix.
   67: *>
   68: *>          On exit, if INFO = 0, the (Hermitian) inverse of the original
   69: *>          matrix, stored as a packed triangular matrix. The j-th column
   70: *>          of inv(A) is stored in the array AP as follows:
   71: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
   72: *>          if UPLO = 'L',
   73: *>             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] IPIV
   77: *> \verbatim
   78: *>          IPIV is INTEGER array, dimension (N)
   79: *>          Details of the interchanges and the block structure of D
   80: *>          as determined by ZHPTRF.
   81: *> \endverbatim
   82: *>
   83: *> \param[out] WORK
   84: *> \verbatim
   85: *>          WORK is COMPLEX*16 array, dimension (N)
   86: *> \endverbatim
   87: *>
   88: *> \param[out] INFO
   89: *> \verbatim
   90: *>          INFO is INTEGER
   91: *>          = 0: successful exit
   92: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   93: *>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
   94: *>               inverse could not be computed.
   95: *> \endverbatim
   96: *
   97: *  Authors:
   98: *  ========
   99: *
  100: *> \author Univ. of Tennessee
  101: *> \author Univ. of California Berkeley
  102: *> \author Univ. of Colorado Denver
  103: *> \author NAG Ltd.
  104: *
  105: *> \ingroup complex16OTHERcomputational
  106: *
  107: *  =====================================================================
  108:       SUBROUTINE ZHPTRI( UPLO, N, AP, IPIV, WORK, INFO )
  109: *
  110: *  -- LAPACK computational routine --
  111: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  112: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  113: *
  114: *     .. Scalar Arguments ..
  115:       CHARACTER          UPLO
  116:       INTEGER            INFO, N
  117: *     ..
  118: *     .. Array Arguments ..
  119:       INTEGER            IPIV( * )
  120:       COMPLEX*16         AP( * ), WORK( * )
  121: *     ..
  122: *
  123: *  =====================================================================
  124: *
  125: *     .. Parameters ..
  126:       DOUBLE PRECISION   ONE
  127:       COMPLEX*16         CONE, ZERO
  128:       PARAMETER          ( ONE = 1.0D+0, CONE = ( 1.0D+0, 0.0D+0 ),
  129:      $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
  130: *     ..
  131: *     .. Local Scalars ..
  132:       LOGICAL            UPPER
  133:       INTEGER            J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
  134:       DOUBLE PRECISION   AK, AKP1, D, T
  135:       COMPLEX*16         AKKP1, TEMP
  136: *     ..
  137: *     .. External Functions ..
  138:       LOGICAL            LSAME
  139:       COMPLEX*16         ZDOTC
  140:       EXTERNAL           LSAME, ZDOTC
  141: *     ..
  142: *     .. External Subroutines ..
  143:       EXTERNAL           XERBLA, ZCOPY, ZHPMV, ZSWAP
  144: *     ..
  145: *     .. Intrinsic Functions ..
  146:       INTRINSIC          ABS, DBLE, DCONJG
  147: *     ..
  148: *     .. Executable Statements ..
  149: *
  150: *     Test the input parameters.
  151: *
  152:       INFO = 0
  153:       UPPER = LSAME( UPLO, 'U' )
  154:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  155:          INFO = -1
  156:       ELSE IF( N.LT.0 ) THEN
  157:          INFO = -2
  158:       END IF
  159:       IF( INFO.NE.0 ) THEN
  160:          CALL XERBLA( 'ZHPTRI', -INFO )
  161:          RETURN
  162:       END IF
  163: *
  164: *     Quick return if possible
  165: *
  166:       IF( N.EQ.0 )
  167:      $   RETURN
  168: *
  169: *     Check that the diagonal matrix D is nonsingular.
  170: *
  171:       IF( UPPER ) THEN
  172: *
  173: *        Upper triangular storage: examine D from bottom to top
  174: *
  175:          KP = N*( N+1 ) / 2
  176:          DO 10 INFO = N, 1, -1
  177:             IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  178:      $         RETURN
  179:             KP = KP - INFO
  180:    10    CONTINUE
  181:       ELSE
  182: *
  183: *        Lower triangular storage: examine D from top to bottom.
  184: *
  185:          KP = 1
  186:          DO 20 INFO = 1, N
  187:             IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  188:      $         RETURN
  189:             KP = KP + N - INFO + 1
  190:    20    CONTINUE
  191:       END IF
  192:       INFO = 0
  193: *
  194:       IF( UPPER ) THEN
  195: *
  196: *        Compute inv(A) from the factorization A = U*D*U**H.
  197: *
  198: *        K is the main loop index, increasing from 1 to N in steps of
  199: *        1 or 2, depending on the size of the diagonal blocks.
  200: *
  201:          K = 1
  202:          KC = 1
  203:    30    CONTINUE
  204: *
  205: *        If K > N, exit from loop.
  206: *
  207:          IF( K.GT.N )
  208:      $      GO TO 50
  209: *
  210:          KCNEXT = KC + K
  211:          IF( IPIV( K ).GT.0 ) THEN
  212: *
  213: *           1 x 1 diagonal block
  214: *
  215: *           Invert the diagonal block.
  216: *
  217:             AP( KC+K-1 ) = ONE / DBLE( AP( KC+K-1 ) )
  218: *
  219: *           Compute column K of the inverse.
  220: *
  221:             IF( K.GT.1 ) THEN
  222:                CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  223:                CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
  224:      $                     AP( KC ), 1 )
  225:                AP( KC+K-1 ) = AP( KC+K-1 ) -
  226:      $                        DBLE( ZDOTC( K-1, WORK, 1, AP( KC ), 1 ) )
  227:             END IF
  228:             KSTEP = 1
  229:          ELSE
  230: *
  231: *           2 x 2 diagonal block
  232: *
  233: *           Invert the diagonal block.
  234: *
  235:             T = ABS( AP( KCNEXT+K-1 ) )
  236:             AK = DBLE( AP( KC+K-1 ) ) / T
  237:             AKP1 = DBLE( AP( KCNEXT+K ) ) / T
  238:             AKKP1 = AP( KCNEXT+K-1 ) / T
  239:             D = T*( AK*AKP1-ONE )
  240:             AP( KC+K-1 ) = AKP1 / D
  241:             AP( KCNEXT+K ) = AK / D
  242:             AP( KCNEXT+K-1 ) = -AKKP1 / D
  243: *
  244: *           Compute columns K and K+1 of the inverse.
  245: *
  246:             IF( K.GT.1 ) THEN
  247:                CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  248:                CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
  249:      $                     AP( KC ), 1 )
  250:                AP( KC+K-1 ) = AP( KC+K-1 ) -
  251:      $                        DBLE( ZDOTC( K-1, WORK, 1, AP( KC ), 1 ) )
  252:                AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
  253:      $                            ZDOTC( K-1, AP( KC ), 1, AP( KCNEXT ),
  254:      $                            1 )
  255:                CALL ZCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
  256:                CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
  257:      $                     AP( KCNEXT ), 1 )
  258:                AP( KCNEXT+K ) = AP( KCNEXT+K ) -
  259:      $                          DBLE( ZDOTC( K-1, WORK, 1, AP( KCNEXT ),
  260:      $                          1 ) )
  261:             END IF
  262:             KSTEP = 2
  263:             KCNEXT = KCNEXT + K + 1
  264:          END IF
  265: *
  266:          KP = ABS( IPIV( K ) )
  267:          IF( KP.NE.K ) THEN
  268: *
  269: *           Interchange rows and columns K and KP in the leading
  270: *           submatrix A(1:k+1,1:k+1)
  271: *
  272:             KPC = ( KP-1 )*KP / 2 + 1
  273:             CALL ZSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
  274:             KX = KPC + KP - 1
  275:             DO 40 J = KP + 1, K - 1
  276:                KX = KX + J - 1
  277:                TEMP = DCONJG( AP( KC+J-1 ) )
  278:                AP( KC+J-1 ) = DCONJG( AP( KX ) )
  279:                AP( KX ) = TEMP
  280:    40       CONTINUE
  281:             AP( KC+KP-1 ) = DCONJG( AP( KC+KP-1 ) )
  282:             TEMP = AP( KC+K-1 )
  283:             AP( KC+K-1 ) = AP( KPC+KP-1 )
  284:             AP( KPC+KP-1 ) = TEMP
  285:             IF( KSTEP.EQ.2 ) THEN
  286:                TEMP = AP( KC+K+K-1 )
  287:                AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
  288:                AP( KC+K+KP-1 ) = TEMP
  289:             END IF
  290:          END IF
  291: *
  292:          K = K + KSTEP
  293:          KC = KCNEXT
  294:          GO TO 30
  295:    50    CONTINUE
  296: *
  297:       ELSE
  298: *
  299: *        Compute inv(A) from the factorization A = L*D*L**H.
  300: *
  301: *        K is the main loop index, increasing from 1 to N in steps of
  302: *        1 or 2, depending on the size of the diagonal blocks.
  303: *
  304:          NPP = N*( N+1 ) / 2
  305:          K = N
  306:          KC = NPP
  307:    60    CONTINUE
  308: *
  309: *        If K < 1, exit from loop.
  310: *
  311:          IF( K.LT.1 )
  312:      $      GO TO 80
  313: *
  314:          KCNEXT = KC - ( N-K+2 )
  315:          IF( IPIV( K ).GT.0 ) THEN
  316: *
  317: *           1 x 1 diagonal block
  318: *
  319: *           Invert the diagonal block.
  320: *
  321:             AP( KC ) = ONE / DBLE( AP( KC ) )
  322: *
  323: *           Compute column K of the inverse.
  324: *
  325:             IF( K.LT.N ) THEN
  326:                CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  327:                CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+N-K+1 ), WORK, 1,
  328:      $                     ZERO, AP( KC+1 ), 1 )
  329:                AP( KC ) = AP( KC ) - DBLE( ZDOTC( N-K, WORK, 1,
  330:      $                    AP( KC+1 ), 1 ) )
  331:             END IF
  332:             KSTEP = 1
  333:          ELSE
  334: *
  335: *           2 x 2 diagonal block
  336: *
  337: *           Invert the diagonal block.
  338: *
  339:             T = ABS( AP( KCNEXT+1 ) )
  340:             AK = DBLE( AP( KCNEXT ) ) / T
  341:             AKP1 = DBLE( AP( KC ) ) / T
  342:             AKKP1 = AP( KCNEXT+1 ) / T
  343:             D = T*( AK*AKP1-ONE )
  344:             AP( KCNEXT ) = AKP1 / D
  345:             AP( KC ) = AK / D
  346:             AP( KCNEXT+1 ) = -AKKP1 / D
  347: *
  348: *           Compute columns K-1 and K of the inverse.
  349: *
  350:             IF( K.LT.N ) THEN
  351:                CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  352:                CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+( N-K+1 ) ), WORK,
  353:      $                     1, ZERO, AP( KC+1 ), 1 )
  354:                AP( KC ) = AP( KC ) - DBLE( ZDOTC( N-K, WORK, 1,
  355:      $                    AP( KC+1 ), 1 ) )
  356:                AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
  357:      $                          ZDOTC( N-K, AP( KC+1 ), 1,
  358:      $                          AP( KCNEXT+2 ), 1 )
  359:                CALL ZCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
  360:                CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+( N-K+1 ) ), WORK,
  361:      $                     1, ZERO, AP( KCNEXT+2 ), 1 )
  362:                AP( KCNEXT ) = AP( KCNEXT ) -
  363:      $                        DBLE( ZDOTC( N-K, WORK, 1, AP( KCNEXT+2 ),
  364:      $                        1 ) )
  365:             END IF
  366:             KSTEP = 2
  367:             KCNEXT = KCNEXT - ( N-K+3 )
  368:          END IF
  369: *
  370:          KP = ABS( IPIV( K ) )
  371:          IF( KP.NE.K ) THEN
  372: *
  373: *           Interchange rows and columns K and KP in the trailing
  374: *           submatrix A(k-1:n,k-1:n)
  375: *
  376:             KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
  377:             IF( KP.LT.N )
  378:      $         CALL ZSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
  379:             KX = KC + KP - K
  380:             DO 70 J = K + 1, KP - 1
  381:                KX = KX + N - J + 1
  382:                TEMP = DCONJG( AP( KC+J-K ) )
  383:                AP( KC+J-K ) = DCONJG( AP( KX ) )
  384:                AP( KX ) = TEMP
  385:    70       CONTINUE
  386:             AP( KC+KP-K ) = DCONJG( AP( KC+KP-K ) )
  387:             TEMP = AP( KC )
  388:             AP( KC ) = AP( KPC )
  389:             AP( KPC ) = TEMP
  390:             IF( KSTEP.EQ.2 ) THEN
  391:                TEMP = AP( KC-N+K-1 )
  392:                AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
  393:                AP( KC-N+KP-1 ) = TEMP
  394:             END IF
  395:          END IF
  396: *
  397:          K = K - KSTEP
  398:          KC = KCNEXT
  399:          GO TO 60
  400:    80    CONTINUE
  401:       END IF
  402: *
  403:       RETURN
  404: *
  405: *     End of ZHPTRI
  406: *
  407:       END

CVSweb interface <joel.bertrand@systella.fr>