File:  [local] / rpl / lapack / lapack / zhptri.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:22 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZHPTRI
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHPTRI + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhptri.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhptri.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhptri.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHPTRI( UPLO, N, AP, IPIV, WORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         AP( * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZHPTRI computes the inverse of a complex Hermitian indefinite matrix
   39: *> A in packed storage using the factorization A = U*D*U**H or
   40: *> A = L*D*L**H computed by ZHPTRF.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the details of the factorization are stored
   50: *>          as an upper or lower triangular matrix.
   51: *>          = 'U':  Upper triangular, form is A = U*D*U**H;
   52: *>          = 'L':  Lower triangular, form is A = L*D*L**H.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in,out] AP
   62: *> \verbatim
   63: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   64: *>          On entry, the block diagonal matrix D and the multipliers
   65: *>          used to obtain the factor U or L as computed by ZHPTRF,
   66: *>          stored as a packed triangular matrix.
   67: *>
   68: *>          On exit, if INFO = 0, the (Hermitian) inverse of the original
   69: *>          matrix, stored as a packed triangular matrix. The j-th column
   70: *>          of inv(A) is stored in the array AP as follows:
   71: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
   72: *>          if UPLO = 'L',
   73: *>             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] IPIV
   77: *> \verbatim
   78: *>          IPIV is INTEGER array, dimension (N)
   79: *>          Details of the interchanges and the block structure of D
   80: *>          as determined by ZHPTRF.
   81: *> \endverbatim
   82: *>
   83: *> \param[out] WORK
   84: *> \verbatim
   85: *>          WORK is COMPLEX*16 array, dimension (N)
   86: *> \endverbatim
   87: *>
   88: *> \param[out] INFO
   89: *> \verbatim
   90: *>          INFO is INTEGER
   91: *>          = 0: successful exit
   92: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   93: *>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
   94: *>               inverse could not be computed.
   95: *> \endverbatim
   96: *
   97: *  Authors:
   98: *  ========
   99: *
  100: *> \author Univ. of Tennessee
  101: *> \author Univ. of California Berkeley
  102: *> \author Univ. of Colorado Denver
  103: *> \author NAG Ltd.
  104: *
  105: *> \date December 2016
  106: *
  107: *> \ingroup complex16OTHERcomputational
  108: *
  109: *  =====================================================================
  110:       SUBROUTINE ZHPTRI( UPLO, N, AP, IPIV, WORK, INFO )
  111: *
  112: *  -- LAPACK computational routine (version 3.7.0) --
  113: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  114: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  115: *     December 2016
  116: *
  117: *     .. Scalar Arguments ..
  118:       CHARACTER          UPLO
  119:       INTEGER            INFO, N
  120: *     ..
  121: *     .. Array Arguments ..
  122:       INTEGER            IPIV( * )
  123:       COMPLEX*16         AP( * ), WORK( * )
  124: *     ..
  125: *
  126: *  =====================================================================
  127: *
  128: *     .. Parameters ..
  129:       DOUBLE PRECISION   ONE
  130:       COMPLEX*16         CONE, ZERO
  131:       PARAMETER          ( ONE = 1.0D+0, CONE = ( 1.0D+0, 0.0D+0 ),
  132:      $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
  133: *     ..
  134: *     .. Local Scalars ..
  135:       LOGICAL            UPPER
  136:       INTEGER            J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
  137:       DOUBLE PRECISION   AK, AKP1, D, T
  138:       COMPLEX*16         AKKP1, TEMP
  139: *     ..
  140: *     .. External Functions ..
  141:       LOGICAL            LSAME
  142:       COMPLEX*16         ZDOTC
  143:       EXTERNAL           LSAME, ZDOTC
  144: *     ..
  145: *     .. External Subroutines ..
  146:       EXTERNAL           XERBLA, ZCOPY, ZHPMV, ZSWAP
  147: *     ..
  148: *     .. Intrinsic Functions ..
  149:       INTRINSIC          ABS, DBLE, DCONJG
  150: *     ..
  151: *     .. Executable Statements ..
  152: *
  153: *     Test the input parameters.
  154: *
  155:       INFO = 0
  156:       UPPER = LSAME( UPLO, 'U' )
  157:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  158:          INFO = -1
  159:       ELSE IF( N.LT.0 ) THEN
  160:          INFO = -2
  161:       END IF
  162:       IF( INFO.NE.0 ) THEN
  163:          CALL XERBLA( 'ZHPTRI', -INFO )
  164:          RETURN
  165:       END IF
  166: *
  167: *     Quick return if possible
  168: *
  169:       IF( N.EQ.0 )
  170:      $   RETURN
  171: *
  172: *     Check that the diagonal matrix D is nonsingular.
  173: *
  174:       IF( UPPER ) THEN
  175: *
  176: *        Upper triangular storage: examine D from bottom to top
  177: *
  178:          KP = N*( N+1 ) / 2
  179:          DO 10 INFO = N, 1, -1
  180:             IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  181:      $         RETURN
  182:             KP = KP - INFO
  183:    10    CONTINUE
  184:       ELSE
  185: *
  186: *        Lower triangular storage: examine D from top to bottom.
  187: *
  188:          KP = 1
  189:          DO 20 INFO = 1, N
  190:             IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  191:      $         RETURN
  192:             KP = KP + N - INFO + 1
  193:    20    CONTINUE
  194:       END IF
  195:       INFO = 0
  196: *
  197:       IF( UPPER ) THEN
  198: *
  199: *        Compute inv(A) from the factorization A = U*D*U**H.
  200: *
  201: *        K is the main loop index, increasing from 1 to N in steps of
  202: *        1 or 2, depending on the size of the diagonal blocks.
  203: *
  204:          K = 1
  205:          KC = 1
  206:    30    CONTINUE
  207: *
  208: *        If K > N, exit from loop.
  209: *
  210:          IF( K.GT.N )
  211:      $      GO TO 50
  212: *
  213:          KCNEXT = KC + K
  214:          IF( IPIV( K ).GT.0 ) THEN
  215: *
  216: *           1 x 1 diagonal block
  217: *
  218: *           Invert the diagonal block.
  219: *
  220:             AP( KC+K-1 ) = ONE / DBLE( AP( KC+K-1 ) )
  221: *
  222: *           Compute column K of the inverse.
  223: *
  224:             IF( K.GT.1 ) THEN
  225:                CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  226:                CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
  227:      $                     AP( KC ), 1 )
  228:                AP( KC+K-1 ) = AP( KC+K-1 ) -
  229:      $                        DBLE( ZDOTC( K-1, WORK, 1, AP( KC ), 1 ) )
  230:             END IF
  231:             KSTEP = 1
  232:          ELSE
  233: *
  234: *           2 x 2 diagonal block
  235: *
  236: *           Invert the diagonal block.
  237: *
  238:             T = ABS( AP( KCNEXT+K-1 ) )
  239:             AK = DBLE( AP( KC+K-1 ) ) / T
  240:             AKP1 = DBLE( AP( KCNEXT+K ) ) / T
  241:             AKKP1 = AP( KCNEXT+K-1 ) / T
  242:             D = T*( AK*AKP1-ONE )
  243:             AP( KC+K-1 ) = AKP1 / D
  244:             AP( KCNEXT+K ) = AK / D
  245:             AP( KCNEXT+K-1 ) = -AKKP1 / D
  246: *
  247: *           Compute columns K and K+1 of the inverse.
  248: *
  249:             IF( K.GT.1 ) THEN
  250:                CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  251:                CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
  252:      $                     AP( KC ), 1 )
  253:                AP( KC+K-1 ) = AP( KC+K-1 ) -
  254:      $                        DBLE( ZDOTC( K-1, WORK, 1, AP( KC ), 1 ) )
  255:                AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
  256:      $                            ZDOTC( K-1, AP( KC ), 1, AP( KCNEXT ),
  257:      $                            1 )
  258:                CALL ZCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
  259:                CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
  260:      $                     AP( KCNEXT ), 1 )
  261:                AP( KCNEXT+K ) = AP( KCNEXT+K ) -
  262:      $                          DBLE( ZDOTC( K-1, WORK, 1, AP( KCNEXT ),
  263:      $                          1 ) )
  264:             END IF
  265:             KSTEP = 2
  266:             KCNEXT = KCNEXT + K + 1
  267:          END IF
  268: *
  269:          KP = ABS( IPIV( K ) )
  270:          IF( KP.NE.K ) THEN
  271: *
  272: *           Interchange rows and columns K and KP in the leading
  273: *           submatrix A(1:k+1,1:k+1)
  274: *
  275:             KPC = ( KP-1 )*KP / 2 + 1
  276:             CALL ZSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
  277:             KX = KPC + KP - 1
  278:             DO 40 J = KP + 1, K - 1
  279:                KX = KX + J - 1
  280:                TEMP = DCONJG( AP( KC+J-1 ) )
  281:                AP( KC+J-1 ) = DCONJG( AP( KX ) )
  282:                AP( KX ) = TEMP
  283:    40       CONTINUE
  284:             AP( KC+KP-1 ) = DCONJG( AP( KC+KP-1 ) )
  285:             TEMP = AP( KC+K-1 )
  286:             AP( KC+K-1 ) = AP( KPC+KP-1 )
  287:             AP( KPC+KP-1 ) = TEMP
  288:             IF( KSTEP.EQ.2 ) THEN
  289:                TEMP = AP( KC+K+K-1 )
  290:                AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
  291:                AP( KC+K+KP-1 ) = TEMP
  292:             END IF
  293:          END IF
  294: *
  295:          K = K + KSTEP
  296:          KC = KCNEXT
  297:          GO TO 30
  298:    50    CONTINUE
  299: *
  300:       ELSE
  301: *
  302: *        Compute inv(A) from the factorization A = L*D*L**H.
  303: *
  304: *        K is the main loop index, increasing from 1 to N in steps of
  305: *        1 or 2, depending on the size of the diagonal blocks.
  306: *
  307:          NPP = N*( N+1 ) / 2
  308:          K = N
  309:          KC = NPP
  310:    60    CONTINUE
  311: *
  312: *        If K < 1, exit from loop.
  313: *
  314:          IF( K.LT.1 )
  315:      $      GO TO 80
  316: *
  317:          KCNEXT = KC - ( N-K+2 )
  318:          IF( IPIV( K ).GT.0 ) THEN
  319: *
  320: *           1 x 1 diagonal block
  321: *
  322: *           Invert the diagonal block.
  323: *
  324:             AP( KC ) = ONE / DBLE( AP( KC ) )
  325: *
  326: *           Compute column K of the inverse.
  327: *
  328:             IF( K.LT.N ) THEN
  329:                CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  330:                CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+N-K+1 ), WORK, 1,
  331:      $                     ZERO, AP( KC+1 ), 1 )
  332:                AP( KC ) = AP( KC ) - DBLE( ZDOTC( N-K, WORK, 1,
  333:      $                    AP( KC+1 ), 1 ) )
  334:             END IF
  335:             KSTEP = 1
  336:          ELSE
  337: *
  338: *           2 x 2 diagonal block
  339: *
  340: *           Invert the diagonal block.
  341: *
  342:             T = ABS( AP( KCNEXT+1 ) )
  343:             AK = DBLE( AP( KCNEXT ) ) / T
  344:             AKP1 = DBLE( AP( KC ) ) / T
  345:             AKKP1 = AP( KCNEXT+1 ) / T
  346:             D = T*( AK*AKP1-ONE )
  347:             AP( KCNEXT ) = AKP1 / D
  348:             AP( KC ) = AK / D
  349:             AP( KCNEXT+1 ) = -AKKP1 / D
  350: *
  351: *           Compute columns K-1 and K of the inverse.
  352: *
  353:             IF( K.LT.N ) THEN
  354:                CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  355:                CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+( N-K+1 ) ), WORK,
  356:      $                     1, ZERO, AP( KC+1 ), 1 )
  357:                AP( KC ) = AP( KC ) - DBLE( ZDOTC( N-K, WORK, 1,
  358:      $                    AP( KC+1 ), 1 ) )
  359:                AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
  360:      $                          ZDOTC( N-K, AP( KC+1 ), 1,
  361:      $                          AP( KCNEXT+2 ), 1 )
  362:                CALL ZCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
  363:                CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+( N-K+1 ) ), WORK,
  364:      $                     1, ZERO, AP( KCNEXT+2 ), 1 )
  365:                AP( KCNEXT ) = AP( KCNEXT ) -
  366:      $                        DBLE( ZDOTC( N-K, WORK, 1, AP( KCNEXT+2 ),
  367:      $                        1 ) )
  368:             END IF
  369:             KSTEP = 2
  370:             KCNEXT = KCNEXT - ( N-K+3 )
  371:          END IF
  372: *
  373:          KP = ABS( IPIV( K ) )
  374:          IF( KP.NE.K ) THEN
  375: *
  376: *           Interchange rows and columns K and KP in the trailing
  377: *           submatrix A(k-1:n,k-1:n)
  378: *
  379:             KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
  380:             IF( KP.LT.N )
  381:      $         CALL ZSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
  382:             KX = KC + KP - K
  383:             DO 70 J = K + 1, KP - 1
  384:                KX = KX + N - J + 1
  385:                TEMP = DCONJG( AP( KC+J-K ) )
  386:                AP( KC+J-K ) = DCONJG( AP( KX ) )
  387:                AP( KX ) = TEMP
  388:    70       CONTINUE
  389:             AP( KC+KP-K ) = DCONJG( AP( KC+KP-K ) )
  390:             TEMP = AP( KC )
  391:             AP( KC ) = AP( KPC )
  392:             AP( KPC ) = TEMP
  393:             IF( KSTEP.EQ.2 ) THEN
  394:                TEMP = AP( KC-N+K-1 )
  395:                AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
  396:                AP( KC-N+KP-1 ) = TEMP
  397:             END IF
  398:          END IF
  399: *
  400:          K = K - KSTEP
  401:          KC = KCNEXT
  402:          GO TO 60
  403:    80    CONTINUE
  404:       END IF
  405: *
  406:       RETURN
  407: *
  408: *     End of ZHPTRI
  409: *
  410:       END

CVSweb interface <joel.bertrand@systella.fr>