File:  [local] / rpl / lapack / lapack / zhptri.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE ZHPTRI( UPLO, N, AP, IPIV, WORK, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INFO, N
   11: *     ..
   12: *     .. Array Arguments ..
   13:       INTEGER            IPIV( * )
   14:       COMPLEX*16         AP( * ), WORK( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZHPTRI computes the inverse of a complex Hermitian indefinite matrix
   21: *  A in packed storage using the factorization A = U*D*U**H or
   22: *  A = L*D*L**H computed by ZHPTRF.
   23: *
   24: *  Arguments
   25: *  =========
   26: *
   27: *  UPLO    (input) CHARACTER*1
   28: *          Specifies whether the details of the factorization are stored
   29: *          as an upper or lower triangular matrix.
   30: *          = 'U':  Upper triangular, form is A = U*D*U**H;
   31: *          = 'L':  Lower triangular, form is A = L*D*L**H.
   32: *
   33: *  N       (input) INTEGER
   34: *          The order of the matrix A.  N >= 0.
   35: *
   36: *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
   37: *          On entry, the block diagonal matrix D and the multipliers
   38: *          used to obtain the factor U or L as computed by ZHPTRF,
   39: *          stored as a packed triangular matrix.
   40: *
   41: *          On exit, if INFO = 0, the (Hermitian) inverse of the original
   42: *          matrix, stored as a packed triangular matrix. The j-th column
   43: *          of inv(A) is stored in the array AP as follows:
   44: *          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
   45: *          if UPLO = 'L',
   46: *             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
   47: *
   48: *  IPIV    (input) INTEGER array, dimension (N)
   49: *          Details of the interchanges and the block structure of D
   50: *          as determined by ZHPTRF.
   51: *
   52: *  WORK    (workspace) COMPLEX*16 array, dimension (N)
   53: *
   54: *  INFO    (output) INTEGER
   55: *          = 0: successful exit
   56: *          < 0: if INFO = -i, the i-th argument had an illegal value
   57: *          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
   58: *               inverse could not be computed.
   59: *
   60: *  =====================================================================
   61: *
   62: *     .. Parameters ..
   63:       DOUBLE PRECISION   ONE
   64:       COMPLEX*16         CONE, ZERO
   65:       PARAMETER          ( ONE = 1.0D+0, CONE = ( 1.0D+0, 0.0D+0 ),
   66:      $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
   67: *     ..
   68: *     .. Local Scalars ..
   69:       LOGICAL            UPPER
   70:       INTEGER            J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
   71:       DOUBLE PRECISION   AK, AKP1, D, T
   72:       COMPLEX*16         AKKP1, TEMP
   73: *     ..
   74: *     .. External Functions ..
   75:       LOGICAL            LSAME
   76:       COMPLEX*16         ZDOTC
   77:       EXTERNAL           LSAME, ZDOTC
   78: *     ..
   79: *     .. External Subroutines ..
   80:       EXTERNAL           XERBLA, ZCOPY, ZHPMV, ZSWAP
   81: *     ..
   82: *     .. Intrinsic Functions ..
   83:       INTRINSIC          ABS, DBLE, DCONJG
   84: *     ..
   85: *     .. Executable Statements ..
   86: *
   87: *     Test the input parameters.
   88: *
   89:       INFO = 0
   90:       UPPER = LSAME( UPLO, 'U' )
   91:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
   92:          INFO = -1
   93:       ELSE IF( N.LT.0 ) THEN
   94:          INFO = -2
   95:       END IF
   96:       IF( INFO.NE.0 ) THEN
   97:          CALL XERBLA( 'ZHPTRI', -INFO )
   98:          RETURN
   99:       END IF
  100: *
  101: *     Quick return if possible
  102: *
  103:       IF( N.EQ.0 )
  104:      $   RETURN
  105: *
  106: *     Check that the diagonal matrix D is nonsingular.
  107: *
  108:       IF( UPPER ) THEN
  109: *
  110: *        Upper triangular storage: examine D from bottom to top
  111: *
  112:          KP = N*( N+1 ) / 2
  113:          DO 10 INFO = N, 1, -1
  114:             IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  115:      $         RETURN
  116:             KP = KP - INFO
  117:    10    CONTINUE
  118:       ELSE
  119: *
  120: *        Lower triangular storage: examine D from top to bottom.
  121: *
  122:          KP = 1
  123:          DO 20 INFO = 1, N
  124:             IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
  125:      $         RETURN
  126:             KP = KP + N - INFO + 1
  127:    20    CONTINUE
  128:       END IF
  129:       INFO = 0
  130: *
  131:       IF( UPPER ) THEN
  132: *
  133: *        Compute inv(A) from the factorization A = U*D*U'.
  134: *
  135: *        K is the main loop index, increasing from 1 to N in steps of
  136: *        1 or 2, depending on the size of the diagonal blocks.
  137: *
  138:          K = 1
  139:          KC = 1
  140:    30    CONTINUE
  141: *
  142: *        If K > N, exit from loop.
  143: *
  144:          IF( K.GT.N )
  145:      $      GO TO 50
  146: *
  147:          KCNEXT = KC + K
  148:          IF( IPIV( K ).GT.0 ) THEN
  149: *
  150: *           1 x 1 diagonal block
  151: *
  152: *           Invert the diagonal block.
  153: *
  154:             AP( KC+K-1 ) = ONE / DBLE( AP( KC+K-1 ) )
  155: *
  156: *           Compute column K of the inverse.
  157: *
  158:             IF( K.GT.1 ) THEN
  159:                CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  160:                CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
  161:      $                     AP( KC ), 1 )
  162:                AP( KC+K-1 ) = AP( KC+K-1 ) -
  163:      $                        DBLE( ZDOTC( K-1, WORK, 1, AP( KC ), 1 ) )
  164:             END IF
  165:             KSTEP = 1
  166:          ELSE
  167: *
  168: *           2 x 2 diagonal block
  169: *
  170: *           Invert the diagonal block.
  171: *
  172:             T = ABS( AP( KCNEXT+K-1 ) )
  173:             AK = DBLE( AP( KC+K-1 ) ) / T
  174:             AKP1 = DBLE( AP( KCNEXT+K ) ) / T
  175:             AKKP1 = AP( KCNEXT+K-1 ) / T
  176:             D = T*( AK*AKP1-ONE )
  177:             AP( KC+K-1 ) = AKP1 / D
  178:             AP( KCNEXT+K ) = AK / D
  179:             AP( KCNEXT+K-1 ) = -AKKP1 / D
  180: *
  181: *           Compute columns K and K+1 of the inverse.
  182: *
  183:             IF( K.GT.1 ) THEN
  184:                CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
  185:                CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
  186:      $                     AP( KC ), 1 )
  187:                AP( KC+K-1 ) = AP( KC+K-1 ) -
  188:      $                        DBLE( ZDOTC( K-1, WORK, 1, AP( KC ), 1 ) )
  189:                AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
  190:      $                            ZDOTC( K-1, AP( KC ), 1, AP( KCNEXT ),
  191:      $                            1 )
  192:                CALL ZCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
  193:                CALL ZHPMV( UPLO, K-1, -CONE, AP, WORK, 1, ZERO,
  194:      $                     AP( KCNEXT ), 1 )
  195:                AP( KCNEXT+K ) = AP( KCNEXT+K ) -
  196:      $                          DBLE( ZDOTC( K-1, WORK, 1, AP( KCNEXT ),
  197:      $                          1 ) )
  198:             END IF
  199:             KSTEP = 2
  200:             KCNEXT = KCNEXT + K + 1
  201:          END IF
  202: *
  203:          KP = ABS( IPIV( K ) )
  204:          IF( KP.NE.K ) THEN
  205: *
  206: *           Interchange rows and columns K and KP in the leading
  207: *           submatrix A(1:k+1,1:k+1)
  208: *
  209:             KPC = ( KP-1 )*KP / 2 + 1
  210:             CALL ZSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
  211:             KX = KPC + KP - 1
  212:             DO 40 J = KP + 1, K - 1
  213:                KX = KX + J - 1
  214:                TEMP = DCONJG( AP( KC+J-1 ) )
  215:                AP( KC+J-1 ) = DCONJG( AP( KX ) )
  216:                AP( KX ) = TEMP
  217:    40       CONTINUE
  218:             AP( KC+KP-1 ) = DCONJG( AP( KC+KP-1 ) )
  219:             TEMP = AP( KC+K-1 )
  220:             AP( KC+K-1 ) = AP( KPC+KP-1 )
  221:             AP( KPC+KP-1 ) = TEMP
  222:             IF( KSTEP.EQ.2 ) THEN
  223:                TEMP = AP( KC+K+K-1 )
  224:                AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
  225:                AP( KC+K+KP-1 ) = TEMP
  226:             END IF
  227:          END IF
  228: *
  229:          K = K + KSTEP
  230:          KC = KCNEXT
  231:          GO TO 30
  232:    50    CONTINUE
  233: *
  234:       ELSE
  235: *
  236: *        Compute inv(A) from the factorization A = L*D*L'.
  237: *
  238: *        K is the main loop index, increasing from 1 to N in steps of
  239: *        1 or 2, depending on the size of the diagonal blocks.
  240: *
  241:          NPP = N*( N+1 ) / 2
  242:          K = N
  243:          KC = NPP
  244:    60    CONTINUE
  245: *
  246: *        If K < 1, exit from loop.
  247: *
  248:          IF( K.LT.1 )
  249:      $      GO TO 80
  250: *
  251:          KCNEXT = KC - ( N-K+2 )
  252:          IF( IPIV( K ).GT.0 ) THEN
  253: *
  254: *           1 x 1 diagonal block
  255: *
  256: *           Invert the diagonal block.
  257: *
  258:             AP( KC ) = ONE / DBLE( AP( KC ) )
  259: *
  260: *           Compute column K of the inverse.
  261: *
  262:             IF( K.LT.N ) THEN
  263:                CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  264:                CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+N-K+1 ), WORK, 1,
  265:      $                     ZERO, AP( KC+1 ), 1 )
  266:                AP( KC ) = AP( KC ) - DBLE( ZDOTC( N-K, WORK, 1,
  267:      $                    AP( KC+1 ), 1 ) )
  268:             END IF
  269:             KSTEP = 1
  270:          ELSE
  271: *
  272: *           2 x 2 diagonal block
  273: *
  274: *           Invert the diagonal block.
  275: *
  276:             T = ABS( AP( KCNEXT+1 ) )
  277:             AK = DBLE( AP( KCNEXT ) ) / T
  278:             AKP1 = DBLE( AP( KC ) ) / T
  279:             AKKP1 = AP( KCNEXT+1 ) / T
  280:             D = T*( AK*AKP1-ONE )
  281:             AP( KCNEXT ) = AKP1 / D
  282:             AP( KC ) = AK / D
  283:             AP( KCNEXT+1 ) = -AKKP1 / D
  284: *
  285: *           Compute columns K-1 and K of the inverse.
  286: *
  287:             IF( K.LT.N ) THEN
  288:                CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
  289:                CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+( N-K+1 ) ), WORK,
  290:      $                     1, ZERO, AP( KC+1 ), 1 )
  291:                AP( KC ) = AP( KC ) - DBLE( ZDOTC( N-K, WORK, 1,
  292:      $                    AP( KC+1 ), 1 ) )
  293:                AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
  294:      $                          ZDOTC( N-K, AP( KC+1 ), 1,
  295:      $                          AP( KCNEXT+2 ), 1 )
  296:                CALL ZCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
  297:                CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+( N-K+1 ) ), WORK,
  298:      $                     1, ZERO, AP( KCNEXT+2 ), 1 )
  299:                AP( KCNEXT ) = AP( KCNEXT ) -
  300:      $                        DBLE( ZDOTC( N-K, WORK, 1, AP( KCNEXT+2 ),
  301:      $                        1 ) )
  302:             END IF
  303:             KSTEP = 2
  304:             KCNEXT = KCNEXT - ( N-K+3 )
  305:          END IF
  306: *
  307:          KP = ABS( IPIV( K ) )
  308:          IF( KP.NE.K ) THEN
  309: *
  310: *           Interchange rows and columns K and KP in the trailing
  311: *           submatrix A(k-1:n,k-1:n)
  312: *
  313:             KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
  314:             IF( KP.LT.N )
  315:      $         CALL ZSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
  316:             KX = KC + KP - K
  317:             DO 70 J = K + 1, KP - 1
  318:                KX = KX + N - J + 1
  319:                TEMP = DCONJG( AP( KC+J-K ) )
  320:                AP( KC+J-K ) = DCONJG( AP( KX ) )
  321:                AP( KX ) = TEMP
  322:    70       CONTINUE
  323:             AP( KC+KP-K ) = DCONJG( AP( KC+KP-K ) )
  324:             TEMP = AP( KC )
  325:             AP( KC ) = AP( KPC )
  326:             AP( KPC ) = TEMP
  327:             IF( KSTEP.EQ.2 ) THEN
  328:                TEMP = AP( KC-N+K-1 )
  329:                AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
  330:                AP( KC-N+KP-1 ) = TEMP
  331:             END IF
  332:          END IF
  333: *
  334:          K = K - KSTEP
  335:          KC = KCNEXT
  336:          GO TO 60
  337:    80    CONTINUE
  338:       END IF
  339: *
  340:       RETURN
  341: *
  342: *     End of ZHPTRI
  343: *
  344:       END

CVSweb interface <joel.bertrand@systella.fr>