File:  [local] / rpl / lapack / lapack / zhptrf.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:26 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZHPTRF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHPTRF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhptrf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhptrf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhptrf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHPTRF( UPLO, N, AP, IPIV, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         AP( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZHPTRF computes the factorization of a complex Hermitian packed
   39: *> matrix A using the Bunch-Kaufman diagonal pivoting method:
   40: *>
   41: *>    A = U*D*U**H  or  A = L*D*L**H
   42: *>
   43: *> where U (or L) is a product of permutation and unit upper (lower)
   44: *> triangular matrices, and D is Hermitian and block diagonal with
   45: *> 1-by-1 and 2-by-2 diagonal blocks.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] UPLO
   52: *> \verbatim
   53: *>          UPLO is CHARACTER*1
   54: *>          = 'U':  Upper triangle of A is stored;
   55: *>          = 'L':  Lower triangle of A is stored.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the matrix A.  N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in,out] AP
   65: *> \verbatim
   66: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   67: *>          On entry, the upper or lower triangle of the Hermitian matrix
   68: *>          A, packed columnwise in a linear array.  The j-th column of A
   69: *>          is stored in the array AP as follows:
   70: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   71: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   72: *>
   73: *>          On exit, the block diagonal matrix D and the multipliers used
   74: *>          to obtain the factor U or L, stored as a packed triangular
   75: *>          matrix overwriting A (see below for further details).
   76: *> \endverbatim
   77: *>
   78: *> \param[out] IPIV
   79: *> \verbatim
   80: *>          IPIV is INTEGER array, dimension (N)
   81: *>          Details of the interchanges and the block structure of D.
   82: *>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
   83: *>          interchanged and D(k,k) is a 1-by-1 diagonal block.
   84: *>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
   85: *>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
   86: *>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
   87: *>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
   88: *>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
   89: *> \endverbatim
   90: *>
   91: *> \param[out] INFO
   92: *> \verbatim
   93: *>          INFO is INTEGER
   94: *>          = 0: successful exit
   95: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   96: *>          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
   97: *>               has been completed, but the block diagonal matrix D is
   98: *>               exactly singular, and division by zero will occur if it
   99: *>               is used to solve a system of equations.
  100: *> \endverbatim
  101: *
  102: *  Authors:
  103: *  ========
  104: *
  105: *> \author Univ. of Tennessee
  106: *> \author Univ. of California Berkeley
  107: *> \author Univ. of Colorado Denver
  108: *> \author NAG Ltd.
  109: *
  110: *> \ingroup complex16OTHERcomputational
  111: *
  112: *> \par Further Details:
  113: *  =====================
  114: *>
  115: *> \verbatim
  116: *>
  117: *>  If UPLO = 'U', then A = U*D*U**H, where
  118: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  119: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  120: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  121: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  122: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  123: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  124: *>
  125: *>             (   I    v    0   )   k-s
  126: *>     U(k) =  (   0    I    0   )   s
  127: *>             (   0    0    I   )   n-k
  128: *>                k-s   s   n-k
  129: *>
  130: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  131: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  132: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
  133: *>
  134: *>  If UPLO = 'L', then A = L*D*L**H, where
  135: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  136: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  137: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  138: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  139: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  140: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  141: *>
  142: *>             (   I    0     0   )  k-1
  143: *>     L(k) =  (   0    I     0   )  s
  144: *>             (   0    v     I   )  n-k-s+1
  145: *>                k-1   s  n-k-s+1
  146: *>
  147: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  148: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  149: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  150: *> \endverbatim
  151: *
  152: *> \par Contributors:
  153: *  ==================
  154: *>
  155: *>  J. Lewis, Boeing Computer Services Company
  156: *
  157: *  =====================================================================
  158:       SUBROUTINE ZHPTRF( UPLO, N, AP, IPIV, INFO )
  159: *
  160: *  -- LAPACK computational routine --
  161: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  162: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  163: *
  164: *     .. Scalar Arguments ..
  165:       CHARACTER          UPLO
  166:       INTEGER            INFO, N
  167: *     ..
  168: *     .. Array Arguments ..
  169:       INTEGER            IPIV( * )
  170:       COMPLEX*16         AP( * )
  171: *     ..
  172: *
  173: *  =====================================================================
  174: *
  175: *     .. Parameters ..
  176:       DOUBLE PRECISION   ZERO, ONE
  177:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  178:       DOUBLE PRECISION   EIGHT, SEVTEN
  179:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  180: *     ..
  181: *     .. Local Scalars ..
  182:       LOGICAL            UPPER
  183:       INTEGER            I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
  184:      $                   KSTEP, KX, NPP
  185:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, ROWMAX,
  186:      $                   TT
  187:       COMPLEX*16         D12, D21, T, WK, WKM1, WKP1, ZDUM
  188: *     ..
  189: *     .. External Functions ..
  190:       LOGICAL            LSAME
  191:       INTEGER            IZAMAX
  192:       DOUBLE PRECISION   DLAPY2
  193:       EXTERNAL           LSAME, IZAMAX, DLAPY2
  194: *     ..
  195: *     .. External Subroutines ..
  196:       EXTERNAL           XERBLA, ZDSCAL, ZHPR, ZSWAP
  197: *     ..
  198: *     .. Intrinsic Functions ..
  199:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
  200: *     ..
  201: *     .. Statement Functions ..
  202:       DOUBLE PRECISION   CABS1
  203: *     ..
  204: *     .. Statement Function definitions ..
  205:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  206: *     ..
  207: *     .. Executable Statements ..
  208: *
  209: *     Test the input parameters.
  210: *
  211:       INFO = 0
  212:       UPPER = LSAME( UPLO, 'U' )
  213:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  214:          INFO = -1
  215:       ELSE IF( N.LT.0 ) THEN
  216:          INFO = -2
  217:       END IF
  218:       IF( INFO.NE.0 ) THEN
  219:          CALL XERBLA( 'ZHPTRF', -INFO )
  220:          RETURN
  221:       END IF
  222: *
  223: *     Initialize ALPHA for use in choosing pivot block size.
  224: *
  225:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  226: *
  227:       IF( UPPER ) THEN
  228: *
  229: *        Factorize A as U*D*U**H using the upper triangle of A
  230: *
  231: *        K is the main loop index, decreasing from N to 1 in steps of
  232: *        1 or 2
  233: *
  234:          K = N
  235:          KC = ( N-1 )*N / 2 + 1
  236:    10    CONTINUE
  237:          KNC = KC
  238: *
  239: *        If K < 1, exit from loop
  240: *
  241:          IF( K.LT.1 )
  242:      $      GO TO 110
  243:          KSTEP = 1
  244: *
  245: *        Determine rows and columns to be interchanged and whether
  246: *        a 1-by-1 or 2-by-2 pivot block will be used
  247: *
  248:          ABSAKK = ABS( DBLE( AP( KC+K-1 ) ) )
  249: *
  250: *        IMAX is the row-index of the largest off-diagonal element in
  251: *        column K, and COLMAX is its absolute value
  252: *
  253:          IF( K.GT.1 ) THEN
  254:             IMAX = IZAMAX( K-1, AP( KC ), 1 )
  255:             COLMAX = CABS1( AP( KC+IMAX-1 ) )
  256:          ELSE
  257:             COLMAX = ZERO
  258:          END IF
  259: *
  260:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  261: *
  262: *           Column K is zero: set INFO and continue
  263: *
  264:             IF( INFO.EQ.0 )
  265:      $         INFO = K
  266:             KP = K
  267:             AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
  268:          ELSE
  269:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  270: *
  271: *              no interchange, use 1-by-1 pivot block
  272: *
  273:                KP = K
  274:             ELSE
  275: *
  276: *              JMAX is the column-index of the largest off-diagonal
  277: *              element in row IMAX, and ROWMAX is its absolute value
  278: *
  279:                ROWMAX = ZERO
  280:                JMAX = IMAX
  281:                KX = IMAX*( IMAX+1 ) / 2 + IMAX
  282:                DO 20 J = IMAX + 1, K
  283:                   IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
  284:                      ROWMAX = CABS1( AP( KX ) )
  285:                      JMAX = J
  286:                   END IF
  287:                   KX = KX + J
  288:    20          CONTINUE
  289:                KPC = ( IMAX-1 )*IMAX / 2 + 1
  290:                IF( IMAX.GT.1 ) THEN
  291:                   JMAX = IZAMAX( IMAX-1, AP( KPC ), 1 )
  292:                   ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-1 ) ) )
  293:                END IF
  294: *
  295:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  296: *
  297: *                 no interchange, use 1-by-1 pivot block
  298: *
  299:                   KP = K
  300:                ELSE IF( ABS( DBLE( AP( KPC+IMAX-1 ) ) ).GE.ALPHA*
  301:      $                  ROWMAX ) THEN
  302: *
  303: *                 interchange rows and columns K and IMAX, use 1-by-1
  304: *                 pivot block
  305: *
  306:                   KP = IMAX
  307:                ELSE
  308: *
  309: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  310: *                 pivot block
  311: *
  312:                   KP = IMAX
  313:                   KSTEP = 2
  314:                END IF
  315:             END IF
  316: *
  317:             KK = K - KSTEP + 1
  318:             IF( KSTEP.EQ.2 )
  319:      $         KNC = KNC - K + 1
  320:             IF( KP.NE.KK ) THEN
  321: *
  322: *              Interchange rows and columns KK and KP in the leading
  323: *              submatrix A(1:k,1:k)
  324: *
  325:                CALL ZSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
  326:                KX = KPC + KP - 1
  327:                DO 30 J = KP + 1, KK - 1
  328:                   KX = KX + J - 1
  329:                   T = DCONJG( AP( KNC+J-1 ) )
  330:                   AP( KNC+J-1 ) = DCONJG( AP( KX ) )
  331:                   AP( KX ) = T
  332:    30          CONTINUE
  333:                AP( KX+KK-1 ) = DCONJG( AP( KX+KK-1 ) )
  334:                R1 = DBLE( AP( KNC+KK-1 ) )
  335:                AP( KNC+KK-1 ) = DBLE( AP( KPC+KP-1 ) )
  336:                AP( KPC+KP-1 ) = R1
  337:                IF( KSTEP.EQ.2 ) THEN
  338:                   AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
  339:                   T = AP( KC+K-2 )
  340:                   AP( KC+K-2 ) = AP( KC+KP-1 )
  341:                   AP( KC+KP-1 ) = T
  342:                END IF
  343:             ELSE
  344:                AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
  345:                IF( KSTEP.EQ.2 )
  346:      $            AP( KC-1 ) = DBLE( AP( KC-1 ) )
  347:             END IF
  348: *
  349: *           Update the leading submatrix
  350: *
  351:             IF( KSTEP.EQ.1 ) THEN
  352: *
  353: *              1-by-1 pivot block D(k): column k now holds
  354: *
  355: *              W(k) = U(k)*D(k)
  356: *
  357: *              where U(k) is the k-th column of U
  358: *
  359: *              Perform a rank-1 update of A(1:k-1,1:k-1) as
  360: *
  361: *              A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H
  362: *
  363:                R1 = ONE / DBLE( AP( KC+K-1 ) )
  364:                CALL ZHPR( UPLO, K-1, -R1, AP( KC ), 1, AP )
  365: *
  366: *              Store U(k) in column k
  367: *
  368:                CALL ZDSCAL( K-1, R1, AP( KC ), 1 )
  369:             ELSE
  370: *
  371: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  372: *
  373: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  374: *
  375: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  376: *              of U
  377: *
  378: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  379: *
  380: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H
  381: *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H
  382: *
  383:                IF( K.GT.2 ) THEN
  384: *
  385:                   D = DLAPY2( DBLE( AP( K-1+( K-1 )*K / 2 ) ),
  386:      $                DIMAG( AP( K-1+( K-1 )*K / 2 ) ) )
  387:                   D22 = DBLE( AP( K-1+( K-2 )*( K-1 ) / 2 ) ) / D
  388:                   D11 = DBLE( AP( K+( K-1 )*K / 2 ) ) / D
  389:                   TT = ONE / ( D11*D22-ONE )
  390:                   D12 = AP( K-1+( K-1 )*K / 2 ) / D
  391:                   D = TT / D
  392: *
  393:                   DO 50 J = K - 2, 1, -1
  394:                      WKM1 = D*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
  395:      $                      DCONJG( D12 )*AP( J+( K-1 )*K / 2 ) )
  396:                      WK = D*( D22*AP( J+( K-1 )*K / 2 )-D12*
  397:      $                    AP( J+( K-2 )*( K-1 ) / 2 ) )
  398:                      DO 40 I = J, 1, -1
  399:                         AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) -
  400:      $                     AP( I+( K-1 )*K / 2 )*DCONJG( WK ) -
  401:      $                     AP( I+( K-2 )*( K-1 ) / 2 )*DCONJG( WKM1 )
  402:    40                CONTINUE
  403:                      AP( J+( K-1 )*K / 2 ) = WK
  404:                      AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
  405:                      AP( J+( J-1 )*J / 2 ) = DCMPLX( DBLE( AP( J+( J-
  406:      $                                       1 )*J / 2 ) ), 0.0D+0 )
  407:    50             CONTINUE
  408: *
  409:                END IF
  410: *
  411:             END IF
  412:          END IF
  413: *
  414: *        Store details of the interchanges in IPIV
  415: *
  416:          IF( KSTEP.EQ.1 ) THEN
  417:             IPIV( K ) = KP
  418:          ELSE
  419:             IPIV( K ) = -KP
  420:             IPIV( K-1 ) = -KP
  421:          END IF
  422: *
  423: *        Decrease K and return to the start of the main loop
  424: *
  425:          K = K - KSTEP
  426:          KC = KNC - K
  427:          GO TO 10
  428: *
  429:       ELSE
  430: *
  431: *        Factorize A as L*D*L**H using the lower triangle of A
  432: *
  433: *        K is the main loop index, increasing from 1 to N in steps of
  434: *        1 or 2
  435: *
  436:          K = 1
  437:          KC = 1
  438:          NPP = N*( N+1 ) / 2
  439:    60    CONTINUE
  440:          KNC = KC
  441: *
  442: *        If K > N, exit from loop
  443: *
  444:          IF( K.GT.N )
  445:      $      GO TO 110
  446:          KSTEP = 1
  447: *
  448: *        Determine rows and columns to be interchanged and whether
  449: *        a 1-by-1 or 2-by-2 pivot block will be used
  450: *
  451:          ABSAKK = ABS( DBLE( AP( KC ) ) )
  452: *
  453: *        IMAX is the row-index of the largest off-diagonal element in
  454: *        column K, and COLMAX is its absolute value
  455: *
  456:          IF( K.LT.N ) THEN
  457:             IMAX = K + IZAMAX( N-K, AP( KC+1 ), 1 )
  458:             COLMAX = CABS1( AP( KC+IMAX-K ) )
  459:          ELSE
  460:             COLMAX = ZERO
  461:          END IF
  462: *
  463:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  464: *
  465: *           Column K is zero: set INFO and continue
  466: *
  467:             IF( INFO.EQ.0 )
  468:      $         INFO = K
  469:             KP = K
  470:             AP( KC ) = DBLE( AP( KC ) )
  471:          ELSE
  472:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  473: *
  474: *              no interchange, use 1-by-1 pivot block
  475: *
  476:                KP = K
  477:             ELSE
  478: *
  479: *              JMAX is the column-index of the largest off-diagonal
  480: *              element in row IMAX, and ROWMAX is its absolute value
  481: *
  482:                ROWMAX = ZERO
  483:                KX = KC + IMAX - K
  484:                DO 70 J = K, IMAX - 1
  485:                   IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
  486:                      ROWMAX = CABS1( AP( KX ) )
  487:                      JMAX = J
  488:                   END IF
  489:                   KX = KX + N - J
  490:    70          CONTINUE
  491:                KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
  492:                IF( IMAX.LT.N ) THEN
  493:                   JMAX = IMAX + IZAMAX( N-IMAX, AP( KPC+1 ), 1 )
  494:                   ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-IMAX ) ) )
  495:                END IF
  496: *
  497:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  498: *
  499: *                 no interchange, use 1-by-1 pivot block
  500: *
  501:                   KP = K
  502:                ELSE IF( ABS( DBLE( AP( KPC ) ) ).GE.ALPHA*ROWMAX ) THEN
  503: *
  504: *                 interchange rows and columns K and IMAX, use 1-by-1
  505: *                 pivot block
  506: *
  507:                   KP = IMAX
  508:                ELSE
  509: *
  510: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  511: *                 pivot block
  512: *
  513:                   KP = IMAX
  514:                   KSTEP = 2
  515:                END IF
  516:             END IF
  517: *
  518:             KK = K + KSTEP - 1
  519:             IF( KSTEP.EQ.2 )
  520:      $         KNC = KNC + N - K + 1
  521:             IF( KP.NE.KK ) THEN
  522: *
  523: *              Interchange rows and columns KK and KP in the trailing
  524: *              submatrix A(k:n,k:n)
  525: *
  526:                IF( KP.LT.N )
  527:      $            CALL ZSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
  528:      $                        1 )
  529:                KX = KNC + KP - KK
  530:                DO 80 J = KK + 1, KP - 1
  531:                   KX = KX + N - J + 1
  532:                   T = DCONJG( AP( KNC+J-KK ) )
  533:                   AP( KNC+J-KK ) = DCONJG( AP( KX ) )
  534:                   AP( KX ) = T
  535:    80          CONTINUE
  536:                AP( KNC+KP-KK ) = DCONJG( AP( KNC+KP-KK ) )
  537:                R1 = DBLE( AP( KNC ) )
  538:                AP( KNC ) = DBLE( AP( KPC ) )
  539:                AP( KPC ) = R1
  540:                IF( KSTEP.EQ.2 ) THEN
  541:                   AP( KC ) = DBLE( AP( KC ) )
  542:                   T = AP( KC+1 )
  543:                   AP( KC+1 ) = AP( KC+KP-K )
  544:                   AP( KC+KP-K ) = T
  545:                END IF
  546:             ELSE
  547:                AP( KC ) = DBLE( AP( KC ) )
  548:                IF( KSTEP.EQ.2 )
  549:      $            AP( KNC ) = DBLE( AP( KNC ) )
  550:             END IF
  551: *
  552: *           Update the trailing submatrix
  553: *
  554:             IF( KSTEP.EQ.1 ) THEN
  555: *
  556: *              1-by-1 pivot block D(k): column k now holds
  557: *
  558: *              W(k) = L(k)*D(k)
  559: *
  560: *              where L(k) is the k-th column of L
  561: *
  562:                IF( K.LT.N ) THEN
  563: *
  564: *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
  565: *
  566: *                 A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H
  567: *
  568:                   R1 = ONE / DBLE( AP( KC ) )
  569:                   CALL ZHPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
  570:      $                       AP( KC+N-K+1 ) )
  571: *
  572: *                 Store L(k) in column K
  573: *
  574:                   CALL ZDSCAL( N-K, R1, AP( KC+1 ), 1 )
  575:                END IF
  576:             ELSE
  577: *
  578: *              2-by-2 pivot block D(k): columns K and K+1 now hold
  579: *
  580: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  581: *
  582: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  583: *              of L
  584: *
  585:                IF( K.LT.N-1 ) THEN
  586: *
  587: *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
  588: *
  589: *                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H
  590: *                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H
  591: *
  592: *                 where L(k) and L(k+1) are the k-th and (k+1)-th
  593: *                 columns of L
  594: *
  595:                   D = DLAPY2( DBLE( AP( K+1+( K-1 )*( 2*N-K ) / 2 ) ),
  596:      $                DIMAG( AP( K+1+( K-1 )*( 2*N-K ) / 2 ) ) )
  597:                   D11 = DBLE( AP( K+1+K*( 2*N-K-1 ) / 2 ) ) / D
  598:                   D22 = DBLE( AP( K+( K-1 )*( 2*N-K ) / 2 ) ) / D
  599:                   TT = ONE / ( D11*D22-ONE )
  600:                   D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 ) / D
  601:                   D = TT / D
  602: *
  603:                   DO 100 J = K + 2, N
  604:                      WK = D*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )-D21*
  605:      $                    AP( J+K*( 2*N-K-1 ) / 2 ) )
  606:                      WKP1 = D*( D22*AP( J+K*( 2*N-K-1 ) / 2 )-
  607:      $                      DCONJG( D21 )*AP( J+( K-1 )*( 2*N-K ) /
  608:      $                      2 ) )
  609:                      DO 90 I = J, N
  610:                         AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )*
  611:      $                     ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) /
  612:      $                     2 )*DCONJG( WK ) - AP( I+K*( 2*N-K-1 ) / 2 )*
  613:      $                     DCONJG( WKP1 )
  614:    90                CONTINUE
  615:                      AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK
  616:                      AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1
  617:                      AP( J+( J-1 )*( 2*N-J ) / 2 )
  618:      $                  = DCMPLX( DBLE( AP( J+( J-1 )*( 2*N-J ) / 2 ) ),
  619:      $                  0.0D+0 )
  620:   100             CONTINUE
  621:                END IF
  622:             END IF
  623:          END IF
  624: *
  625: *        Store details of the interchanges in IPIV
  626: *
  627:          IF( KSTEP.EQ.1 ) THEN
  628:             IPIV( K ) = KP
  629:          ELSE
  630:             IPIV( K ) = -KP
  631:             IPIV( K+1 ) = -KP
  632:          END IF
  633: *
  634: *        Increase K and return to the start of the main loop
  635: *
  636:          K = K + KSTEP
  637:          KC = KNC + N - K + 2
  638:          GO TO 60
  639: *
  640:       END IF
  641: *
  642:   110 CONTINUE
  643:       RETURN
  644: *
  645: *     End of ZHPTRF
  646: *
  647:       END

CVSweb interface <joel.bertrand@systella.fr>