File:  [local] / rpl / lapack / lapack / zhptrf.f
Revision 1.15: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:54:17 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b ZHPTRF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHPTRF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhptrf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhptrf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhptrf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHPTRF( UPLO, N, AP, IPIV, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         AP( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZHPTRF computes the factorization of a complex Hermitian packed
   39: *> matrix A using the Bunch-Kaufman diagonal pivoting method:
   40: *>
   41: *>    A = U*D*U**H  or  A = L*D*L**H
   42: *>
   43: *> where U (or L) is a product of permutation and unit upper (lower)
   44: *> triangular matrices, and D is Hermitian and block diagonal with
   45: *> 1-by-1 and 2-by-2 diagonal blocks.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] UPLO
   52: *> \verbatim
   53: *>          UPLO is CHARACTER*1
   54: *>          = 'U':  Upper triangle of A is stored;
   55: *>          = 'L':  Lower triangle of A is stored.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the matrix A.  N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in,out] AP
   65: *> \verbatim
   66: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   67: *>          On entry, the upper or lower triangle of the Hermitian matrix
   68: *>          A, packed columnwise in a linear array.  The j-th column of A
   69: *>          is stored in the array AP as follows:
   70: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   71: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   72: *>
   73: *>          On exit, the block diagonal matrix D and the multipliers used
   74: *>          to obtain the factor U or L, stored as a packed triangular
   75: *>          matrix overwriting A (see below for further details).
   76: *> \endverbatim
   77: *>
   78: *> \param[out] IPIV
   79: *> \verbatim
   80: *>          IPIV is INTEGER array, dimension (N)
   81: *>          Details of the interchanges and the block structure of D.
   82: *>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
   83: *>          interchanged and D(k,k) is a 1-by-1 diagonal block.
   84: *>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
   85: *>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
   86: *>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
   87: *>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
   88: *>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
   89: *> \endverbatim
   90: *>
   91: *> \param[out] INFO
   92: *> \verbatim
   93: *>          INFO is INTEGER
   94: *>          = 0: successful exit
   95: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   96: *>          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
   97: *>               has been completed, but the block diagonal matrix D is
   98: *>               exactly singular, and division by zero will occur if it
   99: *>               is used to solve a system of equations.
  100: *> \endverbatim
  101: *
  102: *  Authors:
  103: *  ========
  104: *
  105: *> \author Univ. of Tennessee
  106: *> \author Univ. of California Berkeley
  107: *> \author Univ. of Colorado Denver
  108: *> \author NAG Ltd.
  109: *
  110: *> \date December 2016
  111: *
  112: *> \ingroup complex16OTHERcomputational
  113: *
  114: *> \par Further Details:
  115: *  =====================
  116: *>
  117: *> \verbatim
  118: *>
  119: *>  If UPLO = 'U', then A = U*D*U**H, where
  120: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  121: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  122: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  123: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  124: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  125: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  126: *>
  127: *>             (   I    v    0   )   k-s
  128: *>     U(k) =  (   0    I    0   )   s
  129: *>             (   0    0    I   )   n-k
  130: *>                k-s   s   n-k
  131: *>
  132: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  133: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  134: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
  135: *>
  136: *>  If UPLO = 'L', then A = L*D*L**H, where
  137: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  138: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  139: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  140: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  141: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  142: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  143: *>
  144: *>             (   I    0     0   )  k-1
  145: *>     L(k) =  (   0    I     0   )  s
  146: *>             (   0    v     I   )  n-k-s+1
  147: *>                k-1   s  n-k-s+1
  148: *>
  149: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  150: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  151: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  152: *> \endverbatim
  153: *
  154: *> \par Contributors:
  155: *  ==================
  156: *>
  157: *>  J. Lewis, Boeing Computer Services Company
  158: *
  159: *  =====================================================================
  160:       SUBROUTINE ZHPTRF( UPLO, N, AP, IPIV, INFO )
  161: *
  162: *  -- LAPACK computational routine (version 3.7.0) --
  163: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  164: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  165: *     December 2016
  166: *
  167: *     .. Scalar Arguments ..
  168:       CHARACTER          UPLO
  169:       INTEGER            INFO, N
  170: *     ..
  171: *     .. Array Arguments ..
  172:       INTEGER            IPIV( * )
  173:       COMPLEX*16         AP( * )
  174: *     ..
  175: *
  176: *  =====================================================================
  177: *
  178: *     .. Parameters ..
  179:       DOUBLE PRECISION   ZERO, ONE
  180:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  181:       DOUBLE PRECISION   EIGHT, SEVTEN
  182:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  183: *     ..
  184: *     .. Local Scalars ..
  185:       LOGICAL            UPPER
  186:       INTEGER            I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
  187:      $                   KSTEP, KX, NPP
  188:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, ROWMAX,
  189:      $                   TT
  190:       COMPLEX*16         D12, D21, T, WK, WKM1, WKP1, ZDUM
  191: *     ..
  192: *     .. External Functions ..
  193:       LOGICAL            LSAME
  194:       INTEGER            IZAMAX
  195:       DOUBLE PRECISION   DLAPY2
  196:       EXTERNAL           LSAME, IZAMAX, DLAPY2
  197: *     ..
  198: *     .. External Subroutines ..
  199:       EXTERNAL           XERBLA, ZDSCAL, ZHPR, ZSWAP
  200: *     ..
  201: *     .. Intrinsic Functions ..
  202:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
  203: *     ..
  204: *     .. Statement Functions ..
  205:       DOUBLE PRECISION   CABS1
  206: *     ..
  207: *     .. Statement Function definitions ..
  208:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  209: *     ..
  210: *     .. Executable Statements ..
  211: *
  212: *     Test the input parameters.
  213: *
  214:       INFO = 0
  215:       UPPER = LSAME( UPLO, 'U' )
  216:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  217:          INFO = -1
  218:       ELSE IF( N.LT.0 ) THEN
  219:          INFO = -2
  220:       END IF
  221:       IF( INFO.NE.0 ) THEN
  222:          CALL XERBLA( 'ZHPTRF', -INFO )
  223:          RETURN
  224:       END IF
  225: *
  226: *     Initialize ALPHA for use in choosing pivot block size.
  227: *
  228:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  229: *
  230:       IF( UPPER ) THEN
  231: *
  232: *        Factorize A as U*D*U**H using the upper triangle of A
  233: *
  234: *        K is the main loop index, decreasing from N to 1 in steps of
  235: *        1 or 2
  236: *
  237:          K = N
  238:          KC = ( N-1 )*N / 2 + 1
  239:    10    CONTINUE
  240:          KNC = KC
  241: *
  242: *        If K < 1, exit from loop
  243: *
  244:          IF( K.LT.1 )
  245:      $      GO TO 110
  246:          KSTEP = 1
  247: *
  248: *        Determine rows and columns to be interchanged and whether
  249: *        a 1-by-1 or 2-by-2 pivot block will be used
  250: *
  251:          ABSAKK = ABS( DBLE( AP( KC+K-1 ) ) )
  252: *
  253: *        IMAX is the row-index of the largest off-diagonal element in
  254: *        column K, and COLMAX is its absolute value
  255: *
  256:          IF( K.GT.1 ) THEN
  257:             IMAX = IZAMAX( K-1, AP( KC ), 1 )
  258:             COLMAX = CABS1( AP( KC+IMAX-1 ) )
  259:          ELSE
  260:             COLMAX = ZERO
  261:          END IF
  262: *
  263:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  264: *
  265: *           Column K is zero: set INFO and continue
  266: *
  267:             IF( INFO.EQ.0 )
  268:      $         INFO = K
  269:             KP = K
  270:             AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
  271:          ELSE
  272:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  273: *
  274: *              no interchange, use 1-by-1 pivot block
  275: *
  276:                KP = K
  277:             ELSE
  278: *
  279: *              JMAX is the column-index of the largest off-diagonal
  280: *              element in row IMAX, and ROWMAX is its absolute value
  281: *
  282:                ROWMAX = ZERO
  283:                JMAX = IMAX
  284:                KX = IMAX*( IMAX+1 ) / 2 + IMAX
  285:                DO 20 J = IMAX + 1, K
  286:                   IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
  287:                      ROWMAX = CABS1( AP( KX ) )
  288:                      JMAX = J
  289:                   END IF
  290:                   KX = KX + J
  291:    20          CONTINUE
  292:                KPC = ( IMAX-1 )*IMAX / 2 + 1
  293:                IF( IMAX.GT.1 ) THEN
  294:                   JMAX = IZAMAX( IMAX-1, AP( KPC ), 1 )
  295:                   ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-1 ) ) )
  296:                END IF
  297: *
  298:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  299: *
  300: *                 no interchange, use 1-by-1 pivot block
  301: *
  302:                   KP = K
  303:                ELSE IF( ABS( DBLE( AP( KPC+IMAX-1 ) ) ).GE.ALPHA*
  304:      $                  ROWMAX ) THEN
  305: *
  306: *                 interchange rows and columns K and IMAX, use 1-by-1
  307: *                 pivot block
  308: *
  309:                   KP = IMAX
  310:                ELSE
  311: *
  312: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  313: *                 pivot block
  314: *
  315:                   KP = IMAX
  316:                   KSTEP = 2
  317:                END IF
  318:             END IF
  319: *
  320:             KK = K - KSTEP + 1
  321:             IF( KSTEP.EQ.2 )
  322:      $         KNC = KNC - K + 1
  323:             IF( KP.NE.KK ) THEN
  324: *
  325: *              Interchange rows and columns KK and KP in the leading
  326: *              submatrix A(1:k,1:k)
  327: *
  328:                CALL ZSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
  329:                KX = KPC + KP - 1
  330:                DO 30 J = KP + 1, KK - 1
  331:                   KX = KX + J - 1
  332:                   T = DCONJG( AP( KNC+J-1 ) )
  333:                   AP( KNC+J-1 ) = DCONJG( AP( KX ) )
  334:                   AP( KX ) = T
  335:    30          CONTINUE
  336:                AP( KX+KK-1 ) = DCONJG( AP( KX+KK-1 ) )
  337:                R1 = DBLE( AP( KNC+KK-1 ) )
  338:                AP( KNC+KK-1 ) = DBLE( AP( KPC+KP-1 ) )
  339:                AP( KPC+KP-1 ) = R1
  340:                IF( KSTEP.EQ.2 ) THEN
  341:                   AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
  342:                   T = AP( KC+K-2 )
  343:                   AP( KC+K-2 ) = AP( KC+KP-1 )
  344:                   AP( KC+KP-1 ) = T
  345:                END IF
  346:             ELSE
  347:                AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
  348:                IF( KSTEP.EQ.2 )
  349:      $            AP( KC-1 ) = DBLE( AP( KC-1 ) )
  350:             END IF
  351: *
  352: *           Update the leading submatrix
  353: *
  354:             IF( KSTEP.EQ.1 ) THEN
  355: *
  356: *              1-by-1 pivot block D(k): column k now holds
  357: *
  358: *              W(k) = U(k)*D(k)
  359: *
  360: *              where U(k) is the k-th column of U
  361: *
  362: *              Perform a rank-1 update of A(1:k-1,1:k-1) as
  363: *
  364: *              A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H
  365: *
  366:                R1 = ONE / DBLE( AP( KC+K-1 ) )
  367:                CALL ZHPR( UPLO, K-1, -R1, AP( KC ), 1, AP )
  368: *
  369: *              Store U(k) in column k
  370: *
  371:                CALL ZDSCAL( K-1, R1, AP( KC ), 1 )
  372:             ELSE
  373: *
  374: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  375: *
  376: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  377: *
  378: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  379: *              of U
  380: *
  381: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  382: *
  383: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H
  384: *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H
  385: *
  386:                IF( K.GT.2 ) THEN
  387: *
  388:                   D = DLAPY2( DBLE( AP( K-1+( K-1 )*K / 2 ) ),
  389:      $                DIMAG( AP( K-1+( K-1 )*K / 2 ) ) )
  390:                   D22 = DBLE( AP( K-1+( K-2 )*( K-1 ) / 2 ) ) / D
  391:                   D11 = DBLE( AP( K+( K-1 )*K / 2 ) ) / D
  392:                   TT = ONE / ( D11*D22-ONE )
  393:                   D12 = AP( K-1+( K-1 )*K / 2 ) / D
  394:                   D = TT / D
  395: *
  396:                   DO 50 J = K - 2, 1, -1
  397:                      WKM1 = D*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
  398:      $                      DCONJG( D12 )*AP( J+( K-1 )*K / 2 ) )
  399:                      WK = D*( D22*AP( J+( K-1 )*K / 2 )-D12*
  400:      $                    AP( J+( K-2 )*( K-1 ) / 2 ) )
  401:                      DO 40 I = J, 1, -1
  402:                         AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) -
  403:      $                     AP( I+( K-1 )*K / 2 )*DCONJG( WK ) -
  404:      $                     AP( I+( K-2 )*( K-1 ) / 2 )*DCONJG( WKM1 )
  405:    40                CONTINUE
  406:                      AP( J+( K-1 )*K / 2 ) = WK
  407:                      AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
  408:                      AP( J+( J-1 )*J / 2 ) = DCMPLX( DBLE( AP( J+( J-
  409:      $                                       1 )*J / 2 ) ), 0.0D+0 )
  410:    50             CONTINUE
  411: *
  412:                END IF
  413: *
  414:             END IF
  415:          END IF
  416: *
  417: *        Store details of the interchanges in IPIV
  418: *
  419:          IF( KSTEP.EQ.1 ) THEN
  420:             IPIV( K ) = KP
  421:          ELSE
  422:             IPIV( K ) = -KP
  423:             IPIV( K-1 ) = -KP
  424:          END IF
  425: *
  426: *        Decrease K and return to the start of the main loop
  427: *
  428:          K = K - KSTEP
  429:          KC = KNC - K
  430:          GO TO 10
  431: *
  432:       ELSE
  433: *
  434: *        Factorize A as L*D*L**H using the lower triangle of A
  435: *
  436: *        K is the main loop index, increasing from 1 to N in steps of
  437: *        1 or 2
  438: *
  439:          K = 1
  440:          KC = 1
  441:          NPP = N*( N+1 ) / 2
  442:    60    CONTINUE
  443:          KNC = KC
  444: *
  445: *        If K > N, exit from loop
  446: *
  447:          IF( K.GT.N )
  448:      $      GO TO 110
  449:          KSTEP = 1
  450: *
  451: *        Determine rows and columns to be interchanged and whether
  452: *        a 1-by-1 or 2-by-2 pivot block will be used
  453: *
  454:          ABSAKK = ABS( DBLE( AP( KC ) ) )
  455: *
  456: *        IMAX is the row-index of the largest off-diagonal element in
  457: *        column K, and COLMAX is its absolute value
  458: *
  459:          IF( K.LT.N ) THEN
  460:             IMAX = K + IZAMAX( N-K, AP( KC+1 ), 1 )
  461:             COLMAX = CABS1( AP( KC+IMAX-K ) )
  462:          ELSE
  463:             COLMAX = ZERO
  464:          END IF
  465: *
  466:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  467: *
  468: *           Column K is zero: set INFO and continue
  469: *
  470:             IF( INFO.EQ.0 )
  471:      $         INFO = K
  472:             KP = K
  473:             AP( KC ) = DBLE( AP( KC ) )
  474:          ELSE
  475:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  476: *
  477: *              no interchange, use 1-by-1 pivot block
  478: *
  479:                KP = K
  480:             ELSE
  481: *
  482: *              JMAX is the column-index of the largest off-diagonal
  483: *              element in row IMAX, and ROWMAX is its absolute value
  484: *
  485:                ROWMAX = ZERO
  486:                KX = KC + IMAX - K
  487:                DO 70 J = K, IMAX - 1
  488:                   IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
  489:                      ROWMAX = CABS1( AP( KX ) )
  490:                      JMAX = J
  491:                   END IF
  492:                   KX = KX + N - J
  493:    70          CONTINUE
  494:                KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
  495:                IF( IMAX.LT.N ) THEN
  496:                   JMAX = IMAX + IZAMAX( N-IMAX, AP( KPC+1 ), 1 )
  497:                   ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-IMAX ) ) )
  498:                END IF
  499: *
  500:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  501: *
  502: *                 no interchange, use 1-by-1 pivot block
  503: *
  504:                   KP = K
  505:                ELSE IF( ABS( DBLE( AP( KPC ) ) ).GE.ALPHA*ROWMAX ) THEN
  506: *
  507: *                 interchange rows and columns K and IMAX, use 1-by-1
  508: *                 pivot block
  509: *
  510:                   KP = IMAX
  511:                ELSE
  512: *
  513: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  514: *                 pivot block
  515: *
  516:                   KP = IMAX
  517:                   KSTEP = 2
  518:                END IF
  519:             END IF
  520: *
  521:             KK = K + KSTEP - 1
  522:             IF( KSTEP.EQ.2 )
  523:      $         KNC = KNC + N - K + 1
  524:             IF( KP.NE.KK ) THEN
  525: *
  526: *              Interchange rows and columns KK and KP in the trailing
  527: *              submatrix A(k:n,k:n)
  528: *
  529:                IF( KP.LT.N )
  530:      $            CALL ZSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
  531:      $                        1 )
  532:                KX = KNC + KP - KK
  533:                DO 80 J = KK + 1, KP - 1
  534:                   KX = KX + N - J + 1
  535:                   T = DCONJG( AP( KNC+J-KK ) )
  536:                   AP( KNC+J-KK ) = DCONJG( AP( KX ) )
  537:                   AP( KX ) = T
  538:    80          CONTINUE
  539:                AP( KNC+KP-KK ) = DCONJG( AP( KNC+KP-KK ) )
  540:                R1 = DBLE( AP( KNC ) )
  541:                AP( KNC ) = DBLE( AP( KPC ) )
  542:                AP( KPC ) = R1
  543:                IF( KSTEP.EQ.2 ) THEN
  544:                   AP( KC ) = DBLE( AP( KC ) )
  545:                   T = AP( KC+1 )
  546:                   AP( KC+1 ) = AP( KC+KP-K )
  547:                   AP( KC+KP-K ) = T
  548:                END IF
  549:             ELSE
  550:                AP( KC ) = DBLE( AP( KC ) )
  551:                IF( KSTEP.EQ.2 )
  552:      $            AP( KNC ) = DBLE( AP( KNC ) )
  553:             END IF
  554: *
  555: *           Update the trailing submatrix
  556: *
  557:             IF( KSTEP.EQ.1 ) THEN
  558: *
  559: *              1-by-1 pivot block D(k): column k now holds
  560: *
  561: *              W(k) = L(k)*D(k)
  562: *
  563: *              where L(k) is the k-th column of L
  564: *
  565:                IF( K.LT.N ) THEN
  566: *
  567: *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
  568: *
  569: *                 A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H
  570: *
  571:                   R1 = ONE / DBLE( AP( KC ) )
  572:                   CALL ZHPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
  573:      $                       AP( KC+N-K+1 ) )
  574: *
  575: *                 Store L(k) in column K
  576: *
  577:                   CALL ZDSCAL( N-K, R1, AP( KC+1 ), 1 )
  578:                END IF
  579:             ELSE
  580: *
  581: *              2-by-2 pivot block D(k): columns K and K+1 now hold
  582: *
  583: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  584: *
  585: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  586: *              of L
  587: *
  588:                IF( K.LT.N-1 ) THEN
  589: *
  590: *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
  591: *
  592: *                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H
  593: *                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H
  594: *
  595: *                 where L(k) and L(k+1) are the k-th and (k+1)-th
  596: *                 columns of L
  597: *
  598:                   D = DLAPY2( DBLE( AP( K+1+( K-1 )*( 2*N-K ) / 2 ) ),
  599:      $                DIMAG( AP( K+1+( K-1 )*( 2*N-K ) / 2 ) ) )
  600:                   D11 = DBLE( AP( K+1+K*( 2*N-K-1 ) / 2 ) ) / D
  601:                   D22 = DBLE( AP( K+( K-1 )*( 2*N-K ) / 2 ) ) / D
  602:                   TT = ONE / ( D11*D22-ONE )
  603:                   D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 ) / D
  604:                   D = TT / D
  605: *
  606:                   DO 100 J = K + 2, N
  607:                      WK = D*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )-D21*
  608:      $                    AP( J+K*( 2*N-K-1 ) / 2 ) )
  609:                      WKP1 = D*( D22*AP( J+K*( 2*N-K-1 ) / 2 )-
  610:      $                      DCONJG( D21 )*AP( J+( K-1 )*( 2*N-K ) /
  611:      $                      2 ) )
  612:                      DO 90 I = J, N
  613:                         AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )*
  614:      $                     ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) /
  615:      $                     2 )*DCONJG( WK ) - AP( I+K*( 2*N-K-1 ) / 2 )*
  616:      $                     DCONJG( WKP1 )
  617:    90                CONTINUE
  618:                      AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK
  619:                      AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1
  620:                      AP( J+( J-1 )*( 2*N-J ) / 2 )
  621:      $                  = DCMPLX( DBLE( AP( J+( J-1 )*( 2*N-J ) / 2 ) ),
  622:      $                  0.0D+0 )
  623:   100             CONTINUE
  624:                END IF
  625:             END IF
  626:          END IF
  627: *
  628: *        Store details of the interchanges in IPIV
  629: *
  630:          IF( KSTEP.EQ.1 ) THEN
  631:             IPIV( K ) = KP
  632:          ELSE
  633:             IPIV( K ) = -KP
  634:             IPIV( K+1 ) = -KP
  635:          END IF
  636: *
  637: *        Increase K and return to the start of the main loop
  638: *
  639:          K = K + KSTEP
  640:          KC = KNC + N - K + 2
  641:          GO TO 60
  642: *
  643:       END IF
  644: *
  645:   110 CONTINUE
  646:       RETURN
  647: *
  648: *     End of ZHPTRF
  649: *
  650:       END

CVSweb interface <joel.bertrand@systella.fr>