File:  [local] / rpl / lapack / lapack / zhptrd.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:16 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE ZHPTRD( UPLO, N, AP, D, E, TAU, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.3.1) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *  -- April 2011                                                      --
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INFO, N
   11: *     ..
   12: *     .. Array Arguments ..
   13:       DOUBLE PRECISION   D( * ), E( * )
   14:       COMPLEX*16         AP( * ), TAU( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZHPTRD reduces a complex Hermitian matrix A stored in packed form to
   21: *  real symmetric tridiagonal form T by a unitary similarity
   22: *  transformation: Q**H * A * Q = T.
   23: *
   24: *  Arguments
   25: *  =========
   26: *
   27: *  UPLO    (input) CHARACTER*1
   28: *          = 'U':  Upper triangle of A is stored;
   29: *          = 'L':  Lower triangle of A is stored.
   30: *
   31: *  N       (input) INTEGER
   32: *          The order of the matrix A.  N >= 0.
   33: *
   34: *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
   35: *          On entry, the upper or lower triangle of the Hermitian matrix
   36: *          A, packed columnwise in a linear array.  The j-th column of A
   37: *          is stored in the array AP as follows:
   38: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   39: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
   40: *          On exit, if UPLO = 'U', the diagonal and first superdiagonal
   41: *          of A are overwritten by the corresponding elements of the
   42: *          tridiagonal matrix T, and the elements above the first
   43: *          superdiagonal, with the array TAU, represent the unitary
   44: *          matrix Q as a product of elementary reflectors; if UPLO
   45: *          = 'L', the diagonal and first subdiagonal of A are over-
   46: *          written by the corresponding elements of the tridiagonal
   47: *          matrix T, and the elements below the first subdiagonal, with
   48: *          the array TAU, represent the unitary matrix Q as a product
   49: *          of elementary reflectors. See Further Details.
   50: *
   51: *  D       (output) DOUBLE PRECISION array, dimension (N)
   52: *          The diagonal elements of the tridiagonal matrix T:
   53: *          D(i) = A(i,i).
   54: *
   55: *  E       (output) DOUBLE PRECISION array, dimension (N-1)
   56: *          The off-diagonal elements of the tridiagonal matrix T:
   57: *          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
   58: *
   59: *  TAU     (output) COMPLEX*16 array, dimension (N-1)
   60: *          The scalar factors of the elementary reflectors (see Further
   61: *          Details).
   62: *
   63: *  INFO    (output) INTEGER
   64: *          = 0:  successful exit
   65: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   66: *
   67: *  Further Details
   68: *  ===============
   69: *
   70: *  If UPLO = 'U', the matrix Q is represented as a product of elementary
   71: *  reflectors
   72: *
   73: *     Q = H(n-1) . . . H(2) H(1).
   74: *
   75: *  Each H(i) has the form
   76: *
   77: *     H(i) = I - tau * v * v**H
   78: *
   79: *  where tau is a complex scalar, and v is a complex vector with
   80: *  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
   81: *  overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
   82: *
   83: *  If UPLO = 'L', the matrix Q is represented as a product of elementary
   84: *  reflectors
   85: *
   86: *     Q = H(1) H(2) . . . H(n-1).
   87: *
   88: *  Each H(i) has the form
   89: *
   90: *     H(i) = I - tau * v * v**H
   91: *
   92: *  where tau is a complex scalar, and v is a complex vector with
   93: *  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
   94: *  overwriting A(i+2:n,i), and tau is stored in TAU(i).
   95: *
   96: *  =====================================================================
   97: *
   98: *     .. Parameters ..
   99:       COMPLEX*16         ONE, ZERO, HALF
  100:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
  101:      $                   ZERO = ( 0.0D+0, 0.0D+0 ),
  102:      $                   HALF = ( 0.5D+0, 0.0D+0 ) )
  103: *     ..
  104: *     .. Local Scalars ..
  105:       LOGICAL            UPPER
  106:       INTEGER            I, I1, I1I1, II
  107:       COMPLEX*16         ALPHA, TAUI
  108: *     ..
  109: *     .. External Subroutines ..
  110:       EXTERNAL           XERBLA, ZAXPY, ZHPMV, ZHPR2, ZLARFG
  111: *     ..
  112: *     .. External Functions ..
  113:       LOGICAL            LSAME
  114:       COMPLEX*16         ZDOTC
  115:       EXTERNAL           LSAME, ZDOTC
  116: *     ..
  117: *     .. Intrinsic Functions ..
  118:       INTRINSIC          DBLE
  119: *     ..
  120: *     .. Executable Statements ..
  121: *
  122: *     Test the input parameters
  123: *
  124:       INFO = 0
  125:       UPPER = LSAME( UPLO, 'U' )
  126:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  127:          INFO = -1
  128:       ELSE IF( N.LT.0 ) THEN
  129:          INFO = -2
  130:       END IF
  131:       IF( INFO.NE.0 ) THEN
  132:          CALL XERBLA( 'ZHPTRD', -INFO )
  133:          RETURN
  134:       END IF
  135: *
  136: *     Quick return if possible
  137: *
  138:       IF( N.LE.0 )
  139:      $   RETURN
  140: *
  141:       IF( UPPER ) THEN
  142: *
  143: *        Reduce the upper triangle of A.
  144: *        I1 is the index in AP of A(1,I+1).
  145: *
  146:          I1 = N*( N-1 ) / 2 + 1
  147:          AP( I1+N-1 ) = DBLE( AP( I1+N-1 ) )
  148:          DO 10 I = N - 1, 1, -1
  149: *
  150: *           Generate elementary reflector H(i) = I - tau * v * v**H
  151: *           to annihilate A(1:i-1,i+1)
  152: *
  153:             ALPHA = AP( I1+I-1 )
  154:             CALL ZLARFG( I, ALPHA, AP( I1 ), 1, TAUI )
  155:             E( I ) = ALPHA
  156: *
  157:             IF( TAUI.NE.ZERO ) THEN
  158: *
  159: *              Apply H(i) from both sides to A(1:i,1:i)
  160: *
  161:                AP( I1+I-1 ) = ONE
  162: *
  163: *              Compute  y := tau * A * v  storing y in TAU(1:i)
  164: *
  165:                CALL ZHPMV( UPLO, I, TAUI, AP, AP( I1 ), 1, ZERO, TAU,
  166:      $                     1 )
  167: *
  168: *              Compute  w := y - 1/2 * tau * (y**H *v) * v
  169: *
  170:                ALPHA = -HALF*TAUI*ZDOTC( I, TAU, 1, AP( I1 ), 1 )
  171:                CALL ZAXPY( I, ALPHA, AP( I1 ), 1, TAU, 1 )
  172: *
  173: *              Apply the transformation as a rank-2 update:
  174: *                 A := A - v * w**H - w * v**H
  175: *
  176:                CALL ZHPR2( UPLO, I, -ONE, AP( I1 ), 1, TAU, 1, AP )
  177: *
  178:             END IF
  179:             AP( I1+I-1 ) = E( I )
  180:             D( I+1 ) = AP( I1+I )
  181:             TAU( I ) = TAUI
  182:             I1 = I1 - I
  183:    10    CONTINUE
  184:          D( 1 ) = AP( 1 )
  185:       ELSE
  186: *
  187: *        Reduce the lower triangle of A. II is the index in AP of
  188: *        A(i,i) and I1I1 is the index of A(i+1,i+1).
  189: *
  190:          II = 1
  191:          AP( 1 ) = DBLE( AP( 1 ) )
  192:          DO 20 I = 1, N - 1
  193:             I1I1 = II + N - I + 1
  194: *
  195: *           Generate elementary reflector H(i) = I - tau * v * v**H
  196: *           to annihilate A(i+2:n,i)
  197: *
  198:             ALPHA = AP( II+1 )
  199:             CALL ZLARFG( N-I, ALPHA, AP( II+2 ), 1, TAUI )
  200:             E( I ) = ALPHA
  201: *
  202:             IF( TAUI.NE.ZERO ) THEN
  203: *
  204: *              Apply H(i) from both sides to A(i+1:n,i+1:n)
  205: *
  206:                AP( II+1 ) = ONE
  207: *
  208: *              Compute  y := tau * A * v  storing y in TAU(i:n-1)
  209: *
  210:                CALL ZHPMV( UPLO, N-I, TAUI, AP( I1I1 ), AP( II+1 ), 1,
  211:      $                     ZERO, TAU( I ), 1 )
  212: *
  213: *              Compute  w := y - 1/2 * tau * (y**H *v) * v
  214: *
  215:                ALPHA = -HALF*TAUI*ZDOTC( N-I, TAU( I ), 1, AP( II+1 ),
  216:      $                 1 )
  217:                CALL ZAXPY( N-I, ALPHA, AP( II+1 ), 1, TAU( I ), 1 )
  218: *
  219: *              Apply the transformation as a rank-2 update:
  220: *                 A := A - v * w**H - w * v**H
  221: *
  222:                CALL ZHPR2( UPLO, N-I, -ONE, AP( II+1 ), 1, TAU( I ), 1,
  223:      $                     AP( I1I1 ) )
  224: *
  225:             END IF
  226:             AP( II+1 ) = E( I )
  227:             D( I ) = AP( II )
  228:             TAU( I ) = TAUI
  229:             II = I1I1
  230:    20    CONTINUE
  231:          D( N ) = AP( II )
  232:       END IF
  233: *
  234:       RETURN
  235: *
  236: *     End of ZHPTRD
  237: *
  238:       END

CVSweb interface <joel.bertrand@systella.fr>