Annotation of rpl/lapack/lapack/zhptrd.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b ZHPTRD
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZHPTRD + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhptrd.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhptrd.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhptrd.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZHPTRD( UPLO, N, AP, D, E, TAU, INFO )
        !            22: * 
        !            23: *       .. Scalar Arguments ..
        !            24: *       CHARACTER          UPLO
        !            25: *       INTEGER            INFO, N
        !            26: *       ..
        !            27: *       .. Array Arguments ..
        !            28: *       DOUBLE PRECISION   D( * ), E( * )
        !            29: *       COMPLEX*16         AP( * ), TAU( * )
        !            30: *       ..
        !            31: *  
        !            32: *
        !            33: *> \par Purpose:
        !            34: *  =============
        !            35: *>
        !            36: *> \verbatim
        !            37: *>
        !            38: *> ZHPTRD reduces a complex Hermitian matrix A stored in packed form to
        !            39: *> real symmetric tridiagonal form T by a unitary similarity
        !            40: *> transformation: Q**H * A * Q = T.
        !            41: *> \endverbatim
        !            42: *
        !            43: *  Arguments:
        !            44: *  ==========
        !            45: *
        !            46: *> \param[in] UPLO
        !            47: *> \verbatim
        !            48: *>          UPLO is CHARACTER*1
        !            49: *>          = 'U':  Upper triangle of A is stored;
        !            50: *>          = 'L':  Lower triangle of A is stored.
        !            51: *> \endverbatim
        !            52: *>
        !            53: *> \param[in] N
        !            54: *> \verbatim
        !            55: *>          N is INTEGER
        !            56: *>          The order of the matrix A.  N >= 0.
        !            57: *> \endverbatim
        !            58: *>
        !            59: *> \param[in,out] AP
        !            60: *> \verbatim
        !            61: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
        !            62: *>          On entry, the upper or lower triangle of the Hermitian matrix
        !            63: *>          A, packed columnwise in a linear array.  The j-th column of A
        !            64: *>          is stored in the array AP as follows:
        !            65: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
        !            66: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
        !            67: *>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
        !            68: *>          of A are overwritten by the corresponding elements of the
        !            69: *>          tridiagonal matrix T, and the elements above the first
        !            70: *>          superdiagonal, with the array TAU, represent the unitary
        !            71: *>          matrix Q as a product of elementary reflectors; if UPLO
        !            72: *>          = 'L', the diagonal and first subdiagonal of A are over-
        !            73: *>          written by the corresponding elements of the tridiagonal
        !            74: *>          matrix T, and the elements below the first subdiagonal, with
        !            75: *>          the array TAU, represent the unitary matrix Q as a product
        !            76: *>          of elementary reflectors. See Further Details.
        !            77: *> \endverbatim
        !            78: *>
        !            79: *> \param[out] D
        !            80: *> \verbatim
        !            81: *>          D is DOUBLE PRECISION array, dimension (N)
        !            82: *>          The diagonal elements of the tridiagonal matrix T:
        !            83: *>          D(i) = A(i,i).
        !            84: *> \endverbatim
        !            85: *>
        !            86: *> \param[out] E
        !            87: *> \verbatim
        !            88: *>          E is DOUBLE PRECISION array, dimension (N-1)
        !            89: *>          The off-diagonal elements of the tridiagonal matrix T:
        !            90: *>          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
        !            91: *> \endverbatim
        !            92: *>
        !            93: *> \param[out] TAU
        !            94: *> \verbatim
        !            95: *>          TAU is COMPLEX*16 array, dimension (N-1)
        !            96: *>          The scalar factors of the elementary reflectors (see Further
        !            97: *>          Details).
        !            98: *> \endverbatim
        !            99: *>
        !           100: *> \param[out] INFO
        !           101: *> \verbatim
        !           102: *>          INFO is INTEGER
        !           103: *>          = 0:  successful exit
        !           104: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           105: *> \endverbatim
        !           106: *
        !           107: *  Authors:
        !           108: *  ========
        !           109: *
        !           110: *> \author Univ. of Tennessee 
        !           111: *> \author Univ. of California Berkeley 
        !           112: *> \author Univ. of Colorado Denver 
        !           113: *> \author NAG Ltd. 
        !           114: *
        !           115: *> \date November 2011
        !           116: *
        !           117: *> \ingroup complex16OTHERcomputational
        !           118: *
        !           119: *> \par Further Details:
        !           120: *  =====================
        !           121: *>
        !           122: *> \verbatim
        !           123: *>
        !           124: *>  If UPLO = 'U', the matrix Q is represented as a product of elementary
        !           125: *>  reflectors
        !           126: *>
        !           127: *>     Q = H(n-1) . . . H(2) H(1).
        !           128: *>
        !           129: *>  Each H(i) has the form
        !           130: *>
        !           131: *>     H(i) = I - tau * v * v**H
        !           132: *>
        !           133: *>  where tau is a complex scalar, and v is a complex vector with
        !           134: *>  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
        !           135: *>  overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
        !           136: *>
        !           137: *>  If UPLO = 'L', the matrix Q is represented as a product of elementary
        !           138: *>  reflectors
        !           139: *>
        !           140: *>     Q = H(1) H(2) . . . H(n-1).
        !           141: *>
        !           142: *>  Each H(i) has the form
        !           143: *>
        !           144: *>     H(i) = I - tau * v * v**H
        !           145: *>
        !           146: *>  where tau is a complex scalar, and v is a complex vector with
        !           147: *>  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
        !           148: *>  overwriting A(i+2:n,i), and tau is stored in TAU(i).
        !           149: *> \endverbatim
        !           150: *>
        !           151: *  =====================================================================
1.1       bertrand  152:       SUBROUTINE ZHPTRD( UPLO, N, AP, D, E, TAU, INFO )
                    153: *
1.9     ! bertrand  154: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  155: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    156: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  157: *     November 2011
1.1       bertrand  158: *
                    159: *     .. Scalar Arguments ..
                    160:       CHARACTER          UPLO
                    161:       INTEGER            INFO, N
                    162: *     ..
                    163: *     .. Array Arguments ..
                    164:       DOUBLE PRECISION   D( * ), E( * )
                    165:       COMPLEX*16         AP( * ), TAU( * )
                    166: *     ..
                    167: *
                    168: *  =====================================================================
                    169: *
                    170: *     .. Parameters ..
                    171:       COMPLEX*16         ONE, ZERO, HALF
                    172:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
                    173:      $                   ZERO = ( 0.0D+0, 0.0D+0 ),
                    174:      $                   HALF = ( 0.5D+0, 0.0D+0 ) )
                    175: *     ..
                    176: *     .. Local Scalars ..
                    177:       LOGICAL            UPPER
                    178:       INTEGER            I, I1, I1I1, II
                    179:       COMPLEX*16         ALPHA, TAUI
                    180: *     ..
                    181: *     .. External Subroutines ..
                    182:       EXTERNAL           XERBLA, ZAXPY, ZHPMV, ZHPR2, ZLARFG
                    183: *     ..
                    184: *     .. External Functions ..
                    185:       LOGICAL            LSAME
                    186:       COMPLEX*16         ZDOTC
                    187:       EXTERNAL           LSAME, ZDOTC
                    188: *     ..
                    189: *     .. Intrinsic Functions ..
                    190:       INTRINSIC          DBLE
                    191: *     ..
                    192: *     .. Executable Statements ..
                    193: *
                    194: *     Test the input parameters
                    195: *
                    196:       INFO = 0
                    197:       UPPER = LSAME( UPLO, 'U' )
                    198:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    199:          INFO = -1
                    200:       ELSE IF( N.LT.0 ) THEN
                    201:          INFO = -2
                    202:       END IF
                    203:       IF( INFO.NE.0 ) THEN
                    204:          CALL XERBLA( 'ZHPTRD', -INFO )
                    205:          RETURN
                    206:       END IF
                    207: *
                    208: *     Quick return if possible
                    209: *
                    210:       IF( N.LE.0 )
                    211:      $   RETURN
                    212: *
                    213:       IF( UPPER ) THEN
                    214: *
                    215: *        Reduce the upper triangle of A.
                    216: *        I1 is the index in AP of A(1,I+1).
                    217: *
                    218:          I1 = N*( N-1 ) / 2 + 1
                    219:          AP( I1+N-1 ) = DBLE( AP( I1+N-1 ) )
                    220:          DO 10 I = N - 1, 1, -1
                    221: *
1.8       bertrand  222: *           Generate elementary reflector H(i) = I - tau * v * v**H
1.1       bertrand  223: *           to annihilate A(1:i-1,i+1)
                    224: *
                    225:             ALPHA = AP( I1+I-1 )
                    226:             CALL ZLARFG( I, ALPHA, AP( I1 ), 1, TAUI )
                    227:             E( I ) = ALPHA
                    228: *
                    229:             IF( TAUI.NE.ZERO ) THEN
                    230: *
                    231: *              Apply H(i) from both sides to A(1:i,1:i)
                    232: *
                    233:                AP( I1+I-1 ) = ONE
                    234: *
                    235: *              Compute  y := tau * A * v  storing y in TAU(1:i)
                    236: *
                    237:                CALL ZHPMV( UPLO, I, TAUI, AP, AP( I1 ), 1, ZERO, TAU,
                    238:      $                     1 )
                    239: *
1.8       bertrand  240: *              Compute  w := y - 1/2 * tau * (y**H *v) * v
1.1       bertrand  241: *
                    242:                ALPHA = -HALF*TAUI*ZDOTC( I, TAU, 1, AP( I1 ), 1 )
                    243:                CALL ZAXPY( I, ALPHA, AP( I1 ), 1, TAU, 1 )
                    244: *
                    245: *              Apply the transformation as a rank-2 update:
1.8       bertrand  246: *                 A := A - v * w**H - w * v**H
1.1       bertrand  247: *
                    248:                CALL ZHPR2( UPLO, I, -ONE, AP( I1 ), 1, TAU, 1, AP )
                    249: *
                    250:             END IF
                    251:             AP( I1+I-1 ) = E( I )
                    252:             D( I+1 ) = AP( I1+I )
                    253:             TAU( I ) = TAUI
                    254:             I1 = I1 - I
                    255:    10    CONTINUE
                    256:          D( 1 ) = AP( 1 )
                    257:       ELSE
                    258: *
                    259: *        Reduce the lower triangle of A. II is the index in AP of
                    260: *        A(i,i) and I1I1 is the index of A(i+1,i+1).
                    261: *
                    262:          II = 1
                    263:          AP( 1 ) = DBLE( AP( 1 ) )
                    264:          DO 20 I = 1, N - 1
                    265:             I1I1 = II + N - I + 1
                    266: *
1.8       bertrand  267: *           Generate elementary reflector H(i) = I - tau * v * v**H
1.1       bertrand  268: *           to annihilate A(i+2:n,i)
                    269: *
                    270:             ALPHA = AP( II+1 )
                    271:             CALL ZLARFG( N-I, ALPHA, AP( II+2 ), 1, TAUI )
                    272:             E( I ) = ALPHA
                    273: *
                    274:             IF( TAUI.NE.ZERO ) THEN
                    275: *
                    276: *              Apply H(i) from both sides to A(i+1:n,i+1:n)
                    277: *
                    278:                AP( II+1 ) = ONE
                    279: *
                    280: *              Compute  y := tau * A * v  storing y in TAU(i:n-1)
                    281: *
                    282:                CALL ZHPMV( UPLO, N-I, TAUI, AP( I1I1 ), AP( II+1 ), 1,
                    283:      $                     ZERO, TAU( I ), 1 )
                    284: *
1.8       bertrand  285: *              Compute  w := y - 1/2 * tau * (y**H *v) * v
1.1       bertrand  286: *
                    287:                ALPHA = -HALF*TAUI*ZDOTC( N-I, TAU( I ), 1, AP( II+1 ),
                    288:      $                 1 )
                    289:                CALL ZAXPY( N-I, ALPHA, AP( II+1 ), 1, TAU( I ), 1 )
                    290: *
                    291: *              Apply the transformation as a rank-2 update:
1.8       bertrand  292: *                 A := A - v * w**H - w * v**H
1.1       bertrand  293: *
                    294:                CALL ZHPR2( UPLO, N-I, -ONE, AP( II+1 ), 1, TAU( I ), 1,
                    295:      $                     AP( I1I1 ) )
                    296: *
                    297:             END IF
                    298:             AP( II+1 ) = E( I )
                    299:             D( I ) = AP( II )
                    300:             TAU( I ) = TAUI
                    301:             II = I1I1
                    302:    20    CONTINUE
                    303:          D( N ) = AP( II )
                    304:       END IF
                    305: *
                    306:       RETURN
                    307: *
                    308: *     End of ZHPTRD
                    309: *
                    310:       END

CVSweb interface <joel.bertrand@systella.fr>