Annotation of rpl/lapack/lapack/zhptrd.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE ZHPTRD( UPLO, N, AP, D, E, TAU, INFO )
                      2: *
                      3: *  -- LAPACK routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       CHARACTER          UPLO
                     10:       INTEGER            INFO, N
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       DOUBLE PRECISION   D( * ), E( * )
                     14:       COMPLEX*16         AP( * ), TAU( * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  ZHPTRD reduces a complex Hermitian matrix A stored in packed form to
                     21: *  real symmetric tridiagonal form T by a unitary similarity
                     22: *  transformation: Q**H * A * Q = T.
                     23: *
                     24: *  Arguments
                     25: *  =========
                     26: *
                     27: *  UPLO    (input) CHARACTER*1
                     28: *          = 'U':  Upper triangle of A is stored;
                     29: *          = 'L':  Lower triangle of A is stored.
                     30: *
                     31: *  N       (input) INTEGER
                     32: *          The order of the matrix A.  N >= 0.
                     33: *
                     34: *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
                     35: *          On entry, the upper or lower triangle of the Hermitian matrix
                     36: *          A, packed columnwise in a linear array.  The j-th column of A
                     37: *          is stored in the array AP as follows:
                     38: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     39: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     40: *          On exit, if UPLO = 'U', the diagonal and first superdiagonal
                     41: *          of A are overwritten by the corresponding elements of the
                     42: *          tridiagonal matrix T, and the elements above the first
                     43: *          superdiagonal, with the array TAU, represent the unitary
                     44: *          matrix Q as a product of elementary reflectors; if UPLO
                     45: *          = 'L', the diagonal and first subdiagonal of A are over-
                     46: *          written by the corresponding elements of the tridiagonal
                     47: *          matrix T, and the elements below the first subdiagonal, with
                     48: *          the array TAU, represent the unitary matrix Q as a product
                     49: *          of elementary reflectors. See Further Details.
                     50: *
                     51: *  D       (output) DOUBLE PRECISION array, dimension (N)
                     52: *          The diagonal elements of the tridiagonal matrix T:
                     53: *          D(i) = A(i,i).
                     54: *
                     55: *  E       (output) DOUBLE PRECISION array, dimension (N-1)
                     56: *          The off-diagonal elements of the tridiagonal matrix T:
                     57: *          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
                     58: *
                     59: *  TAU     (output) COMPLEX*16 array, dimension (N-1)
                     60: *          The scalar factors of the elementary reflectors (see Further
                     61: *          Details).
                     62: *
                     63: *  INFO    (output) INTEGER
                     64: *          = 0:  successful exit
                     65: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     66: *
                     67: *  Further Details
                     68: *  ===============
                     69: *
                     70: *  If UPLO = 'U', the matrix Q is represented as a product of elementary
                     71: *  reflectors
                     72: *
                     73: *     Q = H(n-1) . . . H(2) H(1).
                     74: *
                     75: *  Each H(i) has the form
                     76: *
                     77: *     H(i) = I - tau * v * v'
                     78: *
                     79: *  where tau is a complex scalar, and v is a complex vector with
                     80: *  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
                     81: *  overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
                     82: *
                     83: *  If UPLO = 'L', the matrix Q is represented as a product of elementary
                     84: *  reflectors
                     85: *
                     86: *     Q = H(1) H(2) . . . H(n-1).
                     87: *
                     88: *  Each H(i) has the form
                     89: *
                     90: *     H(i) = I - tau * v * v'
                     91: *
                     92: *  where tau is a complex scalar, and v is a complex vector with
                     93: *  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
                     94: *  overwriting A(i+2:n,i), and tau is stored in TAU(i).
                     95: *
                     96: *  =====================================================================
                     97: *
                     98: *     .. Parameters ..
                     99:       COMPLEX*16         ONE, ZERO, HALF
                    100:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
                    101:      $                   ZERO = ( 0.0D+0, 0.0D+0 ),
                    102:      $                   HALF = ( 0.5D+0, 0.0D+0 ) )
                    103: *     ..
                    104: *     .. Local Scalars ..
                    105:       LOGICAL            UPPER
                    106:       INTEGER            I, I1, I1I1, II
                    107:       COMPLEX*16         ALPHA, TAUI
                    108: *     ..
                    109: *     .. External Subroutines ..
                    110:       EXTERNAL           XERBLA, ZAXPY, ZHPMV, ZHPR2, ZLARFG
                    111: *     ..
                    112: *     .. External Functions ..
                    113:       LOGICAL            LSAME
                    114:       COMPLEX*16         ZDOTC
                    115:       EXTERNAL           LSAME, ZDOTC
                    116: *     ..
                    117: *     .. Intrinsic Functions ..
                    118:       INTRINSIC          DBLE
                    119: *     ..
                    120: *     .. Executable Statements ..
                    121: *
                    122: *     Test the input parameters
                    123: *
                    124:       INFO = 0
                    125:       UPPER = LSAME( UPLO, 'U' )
                    126:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    127:          INFO = -1
                    128:       ELSE IF( N.LT.0 ) THEN
                    129:          INFO = -2
                    130:       END IF
                    131:       IF( INFO.NE.0 ) THEN
                    132:          CALL XERBLA( 'ZHPTRD', -INFO )
                    133:          RETURN
                    134:       END IF
                    135: *
                    136: *     Quick return if possible
                    137: *
                    138:       IF( N.LE.0 )
                    139:      $   RETURN
                    140: *
                    141:       IF( UPPER ) THEN
                    142: *
                    143: *        Reduce the upper triangle of A.
                    144: *        I1 is the index in AP of A(1,I+1).
                    145: *
                    146:          I1 = N*( N-1 ) / 2 + 1
                    147:          AP( I1+N-1 ) = DBLE( AP( I1+N-1 ) )
                    148:          DO 10 I = N - 1, 1, -1
                    149: *
                    150: *           Generate elementary reflector H(i) = I - tau * v * v'
                    151: *           to annihilate A(1:i-1,i+1)
                    152: *
                    153:             ALPHA = AP( I1+I-1 )
                    154:             CALL ZLARFG( I, ALPHA, AP( I1 ), 1, TAUI )
                    155:             E( I ) = ALPHA
                    156: *
                    157:             IF( TAUI.NE.ZERO ) THEN
                    158: *
                    159: *              Apply H(i) from both sides to A(1:i,1:i)
                    160: *
                    161:                AP( I1+I-1 ) = ONE
                    162: *
                    163: *              Compute  y := tau * A * v  storing y in TAU(1:i)
                    164: *
                    165:                CALL ZHPMV( UPLO, I, TAUI, AP, AP( I1 ), 1, ZERO, TAU,
                    166:      $                     1 )
                    167: *
                    168: *              Compute  w := y - 1/2 * tau * (y'*v) * v
                    169: *
                    170:                ALPHA = -HALF*TAUI*ZDOTC( I, TAU, 1, AP( I1 ), 1 )
                    171:                CALL ZAXPY( I, ALPHA, AP( I1 ), 1, TAU, 1 )
                    172: *
                    173: *              Apply the transformation as a rank-2 update:
                    174: *                 A := A - v * w' - w * v'
                    175: *
                    176:                CALL ZHPR2( UPLO, I, -ONE, AP( I1 ), 1, TAU, 1, AP )
                    177: *
                    178:             END IF
                    179:             AP( I1+I-1 ) = E( I )
                    180:             D( I+1 ) = AP( I1+I )
                    181:             TAU( I ) = TAUI
                    182:             I1 = I1 - I
                    183:    10    CONTINUE
                    184:          D( 1 ) = AP( 1 )
                    185:       ELSE
                    186: *
                    187: *        Reduce the lower triangle of A. II is the index in AP of
                    188: *        A(i,i) and I1I1 is the index of A(i+1,i+1).
                    189: *
                    190:          II = 1
                    191:          AP( 1 ) = DBLE( AP( 1 ) )
                    192:          DO 20 I = 1, N - 1
                    193:             I1I1 = II + N - I + 1
                    194: *
                    195: *           Generate elementary reflector H(i) = I - tau * v * v'
                    196: *           to annihilate A(i+2:n,i)
                    197: *
                    198:             ALPHA = AP( II+1 )
                    199:             CALL ZLARFG( N-I, ALPHA, AP( II+2 ), 1, TAUI )
                    200:             E( I ) = ALPHA
                    201: *
                    202:             IF( TAUI.NE.ZERO ) THEN
                    203: *
                    204: *              Apply H(i) from both sides to A(i+1:n,i+1:n)
                    205: *
                    206:                AP( II+1 ) = ONE
                    207: *
                    208: *              Compute  y := tau * A * v  storing y in TAU(i:n-1)
                    209: *
                    210:                CALL ZHPMV( UPLO, N-I, TAUI, AP( I1I1 ), AP( II+1 ), 1,
                    211:      $                     ZERO, TAU( I ), 1 )
                    212: *
                    213: *              Compute  w := y - 1/2 * tau * (y'*v) * v
                    214: *
                    215:                ALPHA = -HALF*TAUI*ZDOTC( N-I, TAU( I ), 1, AP( II+1 ),
                    216:      $                 1 )
                    217:                CALL ZAXPY( N-I, ALPHA, AP( II+1 ), 1, TAU( I ), 1 )
                    218: *
                    219: *              Apply the transformation as a rank-2 update:
                    220: *                 A := A - v * w' - w * v'
                    221: *
                    222:                CALL ZHPR2( UPLO, N-I, -ONE, AP( II+1 ), 1, TAU( I ), 1,
                    223:      $                     AP( I1I1 ) )
                    224: *
                    225:             END IF
                    226:             AP( II+1 ) = E( I )
                    227:             D( I ) = AP( II )
                    228:             TAU( I ) = TAUI
                    229:             II = I1I1
                    230:    20    CONTINUE
                    231:          D( N ) = AP( II )
                    232:       END IF
                    233: *
                    234:       RETURN
                    235: *
                    236: *     End of ZHPTRD
                    237: *
                    238:       END

CVSweb interface <joel.bertrand@systella.fr>